اذهب إلى المحتوى

لوحة المتصدرين

  1. حسام برهان

    حسام برهان

    الأعضاء


    • نقاط

      2

    • المساهمات

      215


  2. Archimood

    Archimood

    الأعضاء


    • نقاط

      1

    • المساهمات

      4


  3. Ahmed Fouad

    Ahmed Fouad

    الأعضاء


    • نقاط

      1

    • المساهمات

      4


المحتوى الأكثر حصولًا على سمعة جيدة

المحتوى الأعلى تقييمًا في 12/01/16 في كل الموقع

  1. تحدثنا في الدرسين السابقين عن المبادئ الأوليّة لتطبيق مفاهيم البرمجة الكائنيّة التوجّه في سي شارب. سننهي في هذا الدرس تطبيق هذه المبادئ، حيث سنتناول موضوع الوراثة Inheritance والتعدديّة الشكليّة Polymorphism، كما سنتعرّف على محدّد الوصول protected الذي يُستخدم في الوراثة. الوراثة Inheritance سبق وأن قدّمنا للوراثة، واتفقنا على أنّها من أهمّ المفاهيم التي يمكن أن تدعمها لغات البرمجة كائنيّة التوجّه. في الحقيقة يرث أيّ صنف موجود في إطار عمل دوت نت أو أيّ صنف تنشئه بنفسك بشكل مباشر أو غير مباشر من الصنف Object حتى ولو لم نخبر مترجم سي شارب بذلك، حيث سيعمل المترجم على الوراثة منه بشكل ضمنيّ. هذا الصنف ذو دلالة عامّة، وهو غير مفيد كثيرًا كاستخدام بحدّ ذاته. يحتوي الصنف Object على عدد قليل من التوابع كأعضاء ضمنه مثل Equals و GetHashCode و GetType و ToString. التابع الأكثر استخدامًا هو التابع ToString، وهو يُستخدَم عادةً للحصول على التمثيل النصيّ لأيّ كائن. لكي نفهم الوراثة بشكل عمليّ لا بدّ لنا من مثال تمهيديّ. سننشئ لهذا الغرض صنف أب سأسمّيه Father. سيكون هذا الصنف هو الأساس الذي نرث منه. لهذا الصنف الشكل التالي: class Father { public Father() { Console.WriteLine("Father: In Constructor"); } public void MyMethod() { Console.WriteLine("Father: In MyMethod"); } } يحتوي هذا الصنف على التابع MyMethod الذي يحوي الكلمة void قبل اسم التابع مباشرةً. تعني هذه الكلمة أنّ التابع MyMethod لن يُرجع أي قيمة للشيفرة التي استدعته. كما يحتوي الصنف Father على البانية عديمة الوسائط Father. وضعت عبارتي Writeline في كلّ تابع من باب التوضيح. الآن سنعرّف صنفًا جديدًا لنسمّه Child يرث من الصنف Father على الشكل التالي: class Child : Father { } قد يبدو الصنف Child فارغًا إلّا أنّه ليس كذلك. لاحظ من السطر الأوّل لتصريح هذا الصنف كيف وضعنا النقطتان الرأسيّتان (:) ومن ثمّ اسم الصنف Father. يخبر ذلك مترجم سي شارب أنّنا نريد من الصنف Child أن يرث من الصنف Father. في الحقيقة جميع الأعضاء المعرّفة ضمن الصنف Father ستصبح موجودة تلقائيًّا ضمن الصنف Child، بل ويمكن إضافة المزيد من الأعضاء إلى الصنف Child بحسب الحاجة. أنشئ مشروعًا جديدًا وسمّه Lesson08_01، ضع الصنفين السابقين بجوار الصنف Program ضمن فضاء الاسم Lesson08_01 ثم اكتب الشيفرة التالية ضمن التابع Main: Child c = new Child(); c.MyMethod(); نفّذ البرنامج لتحصل على الخرج التالي: Father: In Constructor Father: In MyMethod من الواضح أنّ التنفيذ سيدخل إلى بانية الصنف Father (تذكّر أنّ البانية هي أوّل تابع يُستدعى عند إنشاء الكائن) وإلى التابع MyMethod وكلاهما موجودان ضمن الصنف الأب Father. لنضيف بعض التعديلات على الصنف Child. عدّل الصنف Child ليصبح كما يلي: class Child : Father { public Child() { Console.WriteLine("Child: In Constructor"); } } لاحظ أنّنا قد أضفنا بانية عديمة الوسائط للصنف Child وبداخلها التابع WriteLine لطباعة جملة توضيحيّة. أعد تنفيذ البرنامج السابق لتحصل على الخرج التالي: Father: In Constructor Child: In Constructor Father: In MyMethod الخرج السابق منطقيّ تمامًا. عند إنشاء كائن من الصنف Child باستخدام العبارة: Child c = new Child(); فإنّ بانية الصنف Child سُتستدعى نتيجة لذلك، وبما أنّ الصنف Child يرث من الصنف Father لذلك فإنّ بانية الصنف Father هي من ستُنفّذ أولًا ومن ثمّ بانية الصنف Child. أمّا عند استدعاء التابع MyMethod من الكائن الموجود ضمن المتغيّر c فسنحصل على رسالة الخرج الثالثة كما هو متوقّع. لنجرّب الآن شيئًا آخر. ماذا لو أردنا استبدال محتوى التابع MyMethod بمحتوى خاص بالابن، بمعنى آخر نريد "تجاوز" تعريف التابع MyMethod الموجود في الصنف الأب Father إلى تعريف آخر للتابع MyMethod ولكنّه خاص بالصنف Child. أضف التابع التالي إلى الصنف Child: public new void MyMethod() { Console.WriteLine("Child: In MyMethod"); } لاحظ وجود الكلمة المحجوزة new بعد مُحدّد الوصول public. وظيفة هذه الكلمة في هذا المكان هي إخفاء التابع MyMethod الموجود في الصنف Father واستبداله بالتابع MyMethod الموجود في الصنف Child. الآن بعد تنفيذ البرنامج ستحصل على الخرج التالي: Father: In Constructor Child: In Constructor Child: In MyMethod تمّ المطلوب، لقد أُخفي التابع MyMethod الموجود ضمن الصنف الأب Father لصالح التابع MyMethod الموجود ضمن الصنف الابن Child. يجب أن يبدو البرنامج Lesson08_01 بعد التعديلات الأخيرة شبيهًا بما يلي: 1 using System; 2 3 namespace Lesson08_01 4 { 5 class Father 6 { 7 public Father() 8 { 9 Console.WriteLine("Father: In Constructor"); 10 } 11 12 public void MyMethod() 13 { 14 Console.WriteLine("Father: In MyMethod"); 15 } 16 } 17 18 class Child : Father 19 { 20 public Child() 21 { 22 Console.WriteLine("Child: In Constructor"); 23 } 24 25 public new void MyMethod() 26 { 27 Console.WriteLine("Child: In MyMethod"); 28 } 29 } 30 31 class Program 32 { 33 static void Main(string[] args) 34 { 35 Child c = new Child(); 36 37 c.MyMethod(); 38 39 } 40 } 41 } محدد الوصول protected يُستخدم محدّد الوصول protected في الوراثة. فعندما نُعرّف أحد أعضاء الصنف الأب باستخدام protected فهذا يعني أنّه لا يمكن الوصول إليه مطلقًا إلّا من خلال أعضاء الصنف الأب نفسه، أو من خلال أعضاء الصنف الابن (أو الأحفاد). 1 using System; 2 3 namespace Lesson08_02 4 { 5 class Car 6 { 7 protected string manufacturer; 8 9 public Car() 10 { 11 this.manufacturer = "Car"; 12 } 13 14 public string Manufacturer 15 { 16 Get 17 { 18 return this.manufacturer; 19 } 20 } 21 } 22 23 class Toyota : Car 24 { 25 public Toyota() 26 { 27 this.manufacturer = "Toyota"; 28 } 29 } 30 31 class Program 32 { 33 static void Main(string[] args) 34 { 35 Toyota toyota = new Toyota(); 36 37 Console.WriteLine(toyota.Manufacturer); 38 } 39 } 40 } عند تنفيذ البرنامج ستحصل على الكلمة Toyota في الخرج. السبب في ذلك أنّ بانية الصنف Toyota تصل إلى الحقل manufacturer في السطر 27، رغم أنّه مصرّح عنه في الصنف الأب Car، وذلك لأنّه ذو محدّد وصول protected. من الواضح أنّ الأعضاء المصرّح عنها باستخدام محدّد الوصول private في الأصناف الآباء تبقى مرئيّةً فقط ضمن أعضاء الصنف الأب فحسب. التعددية الشكلية Polymorphism سبق وأن تحدّثنا عن التعدديّة الشكليّة، وكيف أنّها مفهوم أساسيّ في البرمجة كائنيّة التوجّه. يتمحور مفهوم التعدديّة الشكليّة حول أنّه يحق للصنف الابن إعادة صياغة تابع (أو خاصيّة) موجود في صنف أب بصورةٍ تناسبه أكثر. لقد طبّقنا هذا المفهوم قبل قليل وذلك عندما "تجاوز" التابع MyMethod في الصنف الابن Child، التابع MyMethod الموجود في الصنف الأب Father، فأصبح التابع الموجود في الابن يُعبّر عن نفسه بشكل أكثر تخصّصًا. ولكن هذه ليست هي الطريقة المثلى لتنفيذ فكرة التعدديّة الشكلية، تزوّدنا سي شارب في الواقع بأسلوب أفضل بكثير لتحقيق هذا المفهوم. هل تذكر مثال الضفدع Frog والسمكة Fish والطائر Bird وسلوكيّة الانتقال Move التي يرثونها من الصنف Animal؟ تناولنا هذا المثال البسيط في درس سابق. وقد ذكرنا أنّ الصنف Animal هو الصنف الأب للأصناف Frog و Fish و Bird وهو يحتوي على التابع Move الذي يُعبّر عن سلوكيّة الانتقال. وبما أنّ كلًّا من الأصناف الأبناء الثلاثة تُعبّر بشكل مختلف عن عمليّة الانتقال، لذلك فنحن أمام التعدديّة الشكليّة. يحتوي البرنامج Lesson08_03 على صنف أب Animal يحوي تابعًا وحيدًا اسمه Moveـ موسوم بالكلمة المحجوزة virtual التي تجعل منه تابعًا ظاهريًّا يسمح للتوابع الأخرى بتجاوزه. بالإضافة إلى وجود ثلاثة أصناف أبناء للصنف Animal وهي Frog و Fish و Bird. يحتوي كل صنف من الأصناف الأبناء على التابع Move مع وسم خاص هو override. تسمح هذه الكلمة للتابع في الصنف الابن أن "يتجاوز" تعريف نفس التابع في الصنف الأب (موسوم بالكلمة virtual). أعني بكلمة "تجاوز" إعادة تعريف التابع بالشكل الذي يناسب الصنف الابن. فعند الحديث عن الانتقال، فالذي يناسب الضفدع Frog هو القفز، والذي يناسب السمكة Fish هو السباحة، والذي يناسب الطائر Bird بالطبع هو الطيران. وبالمناسبة فإنّ التابع ToString الموجود في الصنف Object هو تابع ظاهريّ (موسوم بالكلمة virtual) ليسمح لأي صنف آخر بتجاوزه. إليك الآن البرنامج Lesson08_03: 1 using System; 2 3 namespace Lesson08_03 4 { 5 class Animal 6 { 7 public virtual void Move() 8 { 9 Console.WriteLine("Animal: Move General Method"); 10 } 11 } 12 13 class Frog : Animal 14 { 15 public override void Move() 16 { 17 Console.WriteLine("Frog - Move: jumping 20 cm"); 18 } 19 } 20 21 class Bird : Animal 22 { 23 public override void Move() 24 { 25 Console.WriteLine("Brid - Move: flying 10 m"); 26 } 27 28 } 29 30 class Fish : Animal 31 { 32 public override void Move() 33 { 34 Console.WriteLine("Fish - Move: swimming 1 m"); 35 } 36 } 37 class Program 38 { 39 static void Main(string[] args) 40 { 41 Frog frog = new Frog(); 42 Fish fish = new Fish(); 43 Bird bird = new Bird(); 44 45 frog.Move(); 46 fish.Move(); 47 bird.Move(); 48 } 49 } 50 } نفّذ البرنامج السابق لتحصل على الخرج التالي: Frog - Move: jumping 20 cm Fish - Move: swimming 1 m Brid - Move: flying 10 m لاحظ كيف يُعبّر كلّ كائن من الأصناف الأبناء عن التابع Move بالشكل الذي يناسبه. وواضح أنّ التابع Move الموجود في الصنف الأب Animal لا يُستدعى مطلقًا. ولكن في بعض الحالات قد نرغب أن يُستدعى التابع المُتجاوَز الموجود في الصنف الأب لإنجاز بعض المهام ومن ثمّ نتابع العمل ضمن التابع المُتجاوِز. يمكننا ذلك ببساطة من خلال استخدام الكلمة المحجوزة base التي تُشير إلى الصنف الأب الذي يرث منه الابن. لاستدعاء التابع Move الموجود في الصنف الأب Animal وذلك من خلال التابع Move الموجود في الصنف Frog أضف العبارة التالية بعد السطر 16 مباشرةً قبل أي عبارة أخرى، ليصبح هذا التابع على الشكل: public override void Move() { base.Move(); Console.WriteLine("Frog - Move: jumping 20 cm"); } أعد تنفيذ البرنامج لتحصل على الخرج التالي: Animal: Move General Method Frog - Move: jumping 20 cm Fish - Move: swimming 1 m Brid - Move: flying 10 m انظر كيف استُدعي التابع Move الموجود في الصنف الأب Animal ومن ثمّ استُدعي التابع Move الموجود في الصنف الابن Frog. التحويل بين الأنواع سنتناول في هذه الفقرة سلوكًا قد يبدو غريبًا بعض الشيء، ولكنّه مهم وأساسيّ وسيصادفك في معظم البرامج التي تكتبها باستخدام سي شارب. أعد البرنامج Lesson08_03 إلى حالته الأصلية (أي أزل العبارة ()base.Move). امسح محتويات التابع Main واستبدلها بالشيفرة التالية: Animal animal = new Frog(); animal.Move(); العبارة الأولى غريبة قليلًا أليس كذلك؟ في الحقيقة الوضع طبيعي تمامًا، فبما أنّ الصنف Animal هو صنف أب للصنف Frog لذلك فيستطيع أيّ متغيّر مصرّح عنه على أنّه من النوع Animal (في مثالنا هذا هو المتغيّر animal) أن يخزّن مرجع إلى كائن من الصنف Frog (تذكّر أنّ التعبير ()new Frog يولّد مرجع لكائن من الصنف Frog). نفّذ البرنامج الآن لتحصل على الخرج التالي: Frog - Move: jumping 20 cm يبدو أنّ برنامجنا ذكيّ كفاية لكي يعرف أنّ الكائن الذي يشير إليه المتغيّر animal هو كائن من الصنف Frog. في الحقيقة يحصل هنا تحويل ضمني بين الكائنات، ولكن إذا فعلنا العكس، أي أسندنا مرجع لكائن من الصنف Animal إلى متغيّر من النوع Frog فسنحصل على خطأ أثناء ترجمة البرنامج. امسح محتويات التابع Main واستبدلها بالشيفرة التالية: Animal animal = new Frog(); Frog frog = animal; نحاول في السطر الثاني أن نُسند المتغيّر animal من النوع Animal إلى المتغيّر frog من النوع Frog، فنحصل على الخطأ التالي عند محاولة تنفيذ البرنامج: Cannot implicitly convert type 'Lesson08_03.Animal' to 'Lesson08_03.Frog'. An explicit conversion exists (are you missing a cast?) يخبرنا هذا الخطأ أنّه لا يمكن التحويل بشكل ضمنيّ من النوع Animal إلى النوع Frog ويقترح علينا استخدام عامل التحويل بين الأنواع casting (هل تذكره؟). رغم أنّ المتغيّر animal يحمل مرجع إل كائن من الصنف Frog في حقيقة الأمر (انظر السطر الأوّل من الشيفرة السابقة) إلّا أنّنا عند محاولتنا إسناد المتغيّر animal إلى المتغيّر frog حصلنا على خطأ. السبب في ذلك هو أنّه لا يحدث تحويل ضمنيّ بين الأنواع implicit conversion وإنّما يتطلّب الأمر إجراء تحويل صريح باستخدام عامل التحويل بين الأنواع. إذا استبدلت السطر الثاني من الشيفرة السابقة بالسطر التالي، ستكون الأمور على ما يرام: Frog frog = (Frog)animal; لاحظ كيف وضعنا عامل التحويل (Frog) أمام المتغيّر animal. سيضمن ذلك حدوث التحويل المطلوب دون أيّ مشاكل. لكي تريح نفسك من التفكير متى يحدث التحويل الضمنيّ ومتى يجب استخدام التحويل الصريح، تذكّر منّي القاعدة التالية: "في حياتنا اليوميّة، كثيرًا ما يحتوي الأب ابنه، ولكنّ العكس ليس صحيحًا". أعلم أنّ لهذه القاعدة شواذ في واقعنا، ولكنّها في البرمجة لا تخيب! فالمتغيّر من النوع الأب يستطيع استقبال أي مرجع لكائن من صنف ابن، ولكنّ العكس ليس صحيح ما لم نستخدم التحويل الصريح بين الأنواع. تحدث ظاهرة التحويل بين الأنواع بالنسبة للأنواع المضمّنة built-in أيضًا. فهناك تحويلات تحدث ضمنيًّا، وأخرى تحدث بتدخّل من المبرمج باستخدام عامل التحويل بين الأنواع، ولكن مع فرق جوهريّ. ففي هذه الحالة ليس بالضرورة أن يكون بين الأنواع التي تجري عمليّة التحويل فيما بينها أي علاقة وراثة. فمثلًا يمكن التحويل ضمنيًّا بين متغيّر من النوع int إلى آخر من النوع double: int i = 6; double d = i; أمّا إذا حاولنا فعل العكس: double d = 6; int i = d; فسنحصل على نفس الخطأ السابق الذي يخبرنا بوجوب استخدام التحويل الصريح بين الأنواع. يمكن حل هذه المشكلة ببساطة باستخدام عامل التحويل (int) ووضعه أمام المتغيّر d في السطر الثاني: double d = 6; int i = (int)d; نخبر المترجم هنا أنّنا نريد التحويل فعليًّا من double إلى int. ستحتاج إلى مثل هذه التقنيّة دومًا إذا كانت عمليّة التحويل ستؤدّي إلى ضياع في البيانات. فالتحويل من double إلى int سيؤدّي إلى ضياع القيمة على يمين الفاصلة العشريّة لأنّ المتغيّرات من النوع int لا تقبلها. وكذلك الأمر عند التحويل من float إلى double لأنّ المتغيّرات من النوع float ذات دقّة أقل من المتغيّرات من النوع double، وهكذا. تمارين داعمة تمرين 1 عدّل البرنامج Lesson08_03 ليعمل كل صنف من الأصناف Frog و Bird و Fish على تجاوز التابع ToString (الموجود في الصنف الأب Object). بحيث عند استدعاء التابع ToString من كائن من الصنف Frog نحصل على النص "I am Frog"، وهكذا بالنسبة للصنفين الباقيين كلّ حسب اسمه. تمرين 2 استفد من البرنامج Lesson08_02 في إنشاء صنف جديد اسمه Corolla يرث من الصنف Toyota. وأضف إلى الصنف الجديد الخاصيّة ProductionYear من النوع int. بعد ذلك أنشئ كائنًا من الصنف Corolla وحاول إسناد قيم لهذه الخاصيّة، وقرائتها منها. الخلاصة تعرّفنا في هذا الدرس على كيفيّة تطبيق الوراثة في سي شارب، كما تعرّفنا على مبادئ التعدديّة الشكليّة Polymorphism وأهميّتها وكيفيّة استثمارها في هذه اللغة. وتعاملنا أيضًا مع التحويل بين الأنواع ورأينا كيف يمكن لمتغيّر من صنف أب أن يحمل مراجع لكائنات من أصناف أبناء. تُستَخدم هذه الأساليب على نحو واسع جدًّا في مكتبة الأصناف الأساسيّة، وستحتاجها في العديد من التطبيقات التي تُنشئها.
    1 نقطة
  2. تحدثنا في الدرس السابق عن المبادئ الأوليّة لتطبيق مفاهيم البرمجة كائنيّة التوجّه في سي شارب، حيث تعلّمنا كيفيّة إنشاء الأصناف وأعضائها، وإنشاء الكائنات من الأصناف والتعامل معها. سنتابع في هذا الدرس الحديث عن تطبيق مبادئ البرمجة كائنيّة التوجّه في سي شارب حيث سنتناول مُحدّد الوصول private (تناولنا محدّد الوصول public في الدرس السابق). وسنتحدّث أيضًا عن الخصائص Properties كنوع جديد من أعضاء الصنف، والفرق بينها وبين حقول البيانات Data Fields. وسنختم هذا الدرس بالحديث عن الأعضاء الساكنة Static Members في الصنف. الخصائص Properties للخصائص ولحقول البيانات المعنى المنطقيّ نفسه في البرمجة كائنيّة التوجّه، إلّا أنّ سي شارب تميّز بينهما من الناحية العمليّة. للخصائص في سي شارب مرونة أكبر، حيث من الممكن تنفيذ عبارات برمجيّة عند إسناد قيمة إلى خاصيّة أو حتى عند القراءة منها. كما من الممكن أن نجعل إحدى الخواص قابلة للقراءة فقط أو حتى قابلة للكتابة فقط (ولو أنّه أمر نادر الحدوث). لفهم هذه المزايا بشكل جيّد سأستعير البرنامج Lesson06_02 من الدرس السابق، وأجري عليه بعض التعديلات لإدخال مفهوم الخصائص. 1 using System; 2 3 namespace Lesson07_01 4 { 5 6 class Employee 7 { 8 private string firstName; 9 private string lastName; 10 private double salary; 11 12 public string FirstName 13 { 14 get 15 { 16 return this.firstName; 17 } 18 set 19 { 20 this.firstName = value; 21 } 22 } 23 24 public string LastName 25 { 26 get 17 { 28 return this.lastName; 29 } 30 set 31 { 32 this.lastName = value; 33 } 34 } 35 36 37 public double Salary 38 { 39 get 40 { 41 return this.salary; 42 } 43 set 44 { 45 this.salary = value; 46 } 47 } 48 49 public string DisplayInfo() 50 { 51 string result = string.Format("{0} {1} - Salary: {2:N0}", 52 this.FirstName, this.LastName, this.Salary); 53 54 return result; 55 } 56 57 public Employee(string firstName, string lastName, double salary) 58 { 59 this.FirstName = firstName; 60 this.LastName = lastName; 61 this.Salary = salary; 62 } 63 64 public Employee() 65 { 66 67 } 68 } 69 70 71 class Program 72 { 73 static void Main(string[] args) 74 { 75 Employee employee1, employee2; 76 77 employee1 = new Employee("Mohammad", "Mansoor", 1000); 78 employee2 = new Employee("Saleh", "Mahmoud", 2500); 79 80 Console.WriteLine("First Employee: {0}", employee1.DisplayInfo()); 81 Console.WriteLine("Second Employee: {0}", employee2.DisplayInfo()); 82 } 83 } 84 } عند تنفيذ البرنامج Lesson07_01 سنحصل على نفس الخرج الذي حصلنا عليه في البرنامج Lesson06_02. لقد أجرينا في الحقيقة بعض التعديلات التي تبدو للوهلة الأولى أنّها ليست ذات مغزى. لقد استبدلنا محدّد الوصول للحقول في الأسطر من 8 حتى 10 ليصبح private بدلًا من public (كما كان الوضع في البرنامج Lesson06_02). يفيد مُحدّد الوصول هذا في جعل الحقل خاصًّا بالصنف ولا يمكن الوصول إليه من خارج الكائن المُنشَأ من هذا الصنف، وبالتالي لا يمكن لأحد أن يُعدّل عليه إلّا التوابع الموجودة ضمن نفس الصنف حصرًا. الأمر الآخر أنّنا قد جعلنا أسماء الحقول تبدأ بحرف طباعي صغير وذلك لتمييزها عن الخصائص التي ستأتي بعدها والتي تحمل نفس الاسم ولكن بحرف طباعي كبير. يبدأ التصريح عن الخاصيّة FirstName في السطر 12 ويمتدّ حتى السطر 22. للخصائص في سي شارب فوائد عظيمة سنختبرها بالتدريج في هذا الدرس وفي الدروس اللّاحقة. لاحظ وجود النوع string قبل اسم الخاصيّة في السطر 12، يُشير ذلك إلى أنّ هذه الخاصيّة تقبل وتعطي قيمًا نصيّة فحسب. في الحقيقة يمكن استبدال string بأيّ نوع نحتاجه. من الواضح أنّ التصريح عن الخاصيّة FirstName يتألّف من قسمين: قسم القراءة get (بين السطرين 14 و 17) وقسم الإسناد set (بين السطرين 18 و 21). في الواقع لا تتعدّى الخاصيّة كونها وسيلة للوصول إلى الحقول الخاصّة private fields الموجودة ضمن الكائن سواءً بالقراءة أو الإسناد، ولكن مع إمكانيّة معالجة القيم سواءً قبل إسنادها إلى هذه الحقول أو بعد القراءة منها. عندما نحاول إسناد قيمة إلى الخاصيّة FirstName ستُنفّذ العبارات البرمجيّة الموجودة في قسم set، وهي عبارة برمجيّة واحدة فقط في مثالنا هذا: this.firstName = value; الكلمة value هي كلمة محجوزة تحتوي على القيمة المُسندة إلى الخاصيّة FirstName. العبارة السابقة واضحة للغاية فهي تعمل على إسناد القيمة المخزّنة ضمن value إلى الحقل firstName. لاحظ كيف يمكننا الوصول إلى هذا الحقل من الكلمة this، كما ويمكننا إغفالها. نستطيع الوصول إلى الحقل firstName رغم أنّه ذو محدّد وصول private لأنّنا نصل إليه من تابع يقع في نفس الصنف. أمّا عندما نحاول قراءة الخاصيّة FirstName فسيتمّ تنفيذ العبارات البرمجيّة الموجودة ضمن القسم get. في هذا المثال يحتوي القسم get على عبارة برمجيّة واحدة وهي: return this.firstName; حيث تعمل على إرجاع القيمة المخزّنة ضمن الحقل firstName إلى الشيفرة التي طلبت قراءة الخاصيّة FirstName. يطبّق نفس الأمر تمامًا على الخاصيّتين LastName و Salary. الخصائص المطبقة تلقائيا يبدو البرنامج السابق طويلًا بلا مبرّر، فنحن لم نقم بأيّ عمل ضمن الخصائص سوى الإسناد أو القراءة. إذا كان الأمر كذلك في برامجك الحقيقيّة فيمكنك الاستغناء عن هذا الشكل من الخصائص واللجوء إلى شكل أكثر حداثةً وعصريّة، والذي يتمثّل بالخصائص المطبّقة تلقائيًّا auto implemented properties. انظر الشكل العام لها فيما يتعلّق بالخاصيّة FirstName: public string FirstName { get; set; } لم تعد العبارات البرمجيّة في قسميّ get و set موجودة. ينحصر دور هذه الخاصيّة في شكلها الحالي في تخزين القيم ضمن الخاصيّة FirstName والقراءة منها فقط. ولكن يأتي السؤال هنا، أين ستخزّن الخاصيّة FirstName قيمها، فأنا لا أرى حقلًا للتخزين! يعمل المترجم في هذه الحالة على إنشاء حقل خاص غير مُشاهد في شيفرة MSIL وظيفته الاحتفاظ بقيمة الخاصيّة FirstName. وهنا قد يجول بخاطرك سؤال آخر: لماذا كلّ هذا التعقيد، لماذا لا نستخدم الحقول كما كنّا نفعل في الدرس السابق وحسب؟ الإجابة بسيطة على هذا التساؤل المشروع. فنحن نستخدم الخصائص بهذا الشكل لغايات تصميميّة فحسب. فكلّما كنت بحاجة لأن تُضيف خاصيّة لأحد الأصناف يمكن الوصول إليها من خارجه فافعل ذلك عن طريق الخصائص (وليس الحقول) ولن تندم، وإن بدا ذلك يتطلّب المزيد من العمل. سنطبّق هذه الخصائص الفريدة على برنامجنا المعدّل Lesson07_02 بحيث تستغني تمامًا عن الحقول firstName و lastName و salary. 1 using System; 2 3 namespace Lesson07_02 4 { 5 6 class Employee 7 { 8 public string FirstName { get; set; } 9 public string LastName { get; set; } 10 public double Salary { get; set; } 11 12 public string DisplayInfo() 13 { 14 string result = string.Format("{0} {1} - Salary: {2:N0}", 15 this.FirstName, this.LastName, this.Salary); 16 17 return result; 18 } 19 20 public Employee(string firstName, string lastName, double salary) 21 { 22 this.FirstName = firstName; 23 this.LastName = lastName; 24 this.Salary = salary; 25 } 26 27 public Employee() 28 { 29 30 } 31 } 32 33 34 class Program 35 { 36 static void Main(string[] args) 37 { 38 Employee employee1, employee2; 39 40 employee1 = new Employee("Mohammad", "Mansoor", 1000); 41 employee2 = new Employee("Saleh", "Mahmoud", 2500); 42 43 Console.WriteLine("First Employee: {0}", employee1.DisplayInfo()); 44 Console.WriteLine("Second Employee: {0}", employee2.DisplayInfo()); 45 } 46 } 47 } أصبح هذا البرنامج الآن يُشبه البرنامج Lesson06_02 من الدرس السابق إلى حدّ كبير، باستثناء أنّنا نستخدم هنا الخصائص بدلًا من الحقول. لاحظ فقط أنّه يمكننا كتابة التصريح عن أيّ خاصيّة على نفس السطر مثل الأسطر 8 و 9 و 10. الخصائص ذات إمكانية القراءة فقط هل تذكُر التمرين الداعم الأوّل من الدرس السابق؟ كان يطلب ذلك التمرين إضافة تابع جديد اسمه GetSalaryAfterTax للحصول على قيمة الراتب بعد خصم الضريبة. واتفقنا وقتها أن تكون هذه الضريبة 2%. سنضيف خاصيّةً لتقوم بهذه المهمّة بدلًا من هذا التابع، ولكنّنا سنجعلها للقراءة فقط read only. أي لا يمكن إسناد أي قيم لها. ستكون الخاصيّة SalaryAfterTax الجديدة على الشكل التالي: public double SalaryAfterTax { get { return 0.98 * this.Salary; } } من الواضح أنّه قد أزلنا القسم set المسؤول عن الإسناد من تصريح الخاصيّة SalaryAfterTax وبذلك تتحوّل للقراءة فقط. يحتوي القسم get على عمليّة حسابيّة بسيطة تطبّق عملية حسم الضريبة على الراتب Salary. سنجري تعديلًا طفيفًا على التابع DisplayInfo لكي يُرفق قيمة الراتب بعد حسم الضريبة ضمن النصّ المنسّق الذي يرجعه. سنحصل في النتيجة على البرنامج Lesson07_03 المعدّل: 1 using System; 2 3 namespace Lesson07_03 4 { 5 6 class Employee 7 { 8 public string FirstName { get; set; } 9 public string LastName { get; set; } 10 public double Salary { get; set; } 11 public double SalaryAfterTax 12 { 13 get 14 { 15 return 0.98 * this.Salary; 16 } 17 } 18 19 public string DisplayInfo() 20 { 21 string result = string.Format("{0} {1} \n Salary: {2:N0} \n Salary after tax: {3:N0}", 22 this.FirstName, this.LastName, this.Salary, this.SalaryAfterTax); 23 24 return result; 25 } 26 27 public Employee(string firstName, string lastName, double salary) 28 { 29 this.FirstName = firstName; 30 this.LastName = lastName; 31 this.Salary = salary; 32 } 33 34 public Employee() 35 { 36 37 } 38 } 39 40 41 class Program 42 { 43 static void Main(string[] args) 44 { 45 Employee employee1, employee2; 46 47 employee1 = new Employee("Mohammad", "Mansoor", 1000); 48 employee2 = new Employee("Saleh", "Mahmoud", 2500); 49 50 Console.WriteLine("First Employee: {0}", employee1.DisplayInfo()); 51 Console.WriteLine("Second Employee: {0}", employee2.DisplayInfo()); 52 } 53 } 54 } أضفت الخاصيّة SalaryAfterTax (الأسطر من 11 حتى 17). وأجريت تعديلًا طفيفًا ضمن التابع DisplayInfo في السطر 21 حيث أضفت المحرف n\ والذي يُستخدم ضمن النص للإشارة إلى وجوب الانتقال إلى سطر جديد لأغراض تنسيقية فقط، كما أضفت مكانًا في النصّ التنسيقيّ {3:N0} لإدراج قيمة الراتب بعد خصم الضريبة this.SalaryAfterTax، وهذا كلّ ما في الأمر. إذا حاولت في هذا البرنامج أن تُسند أيّ قيمة إلى الخاصيّة SalaryAfterTax ستحصل على خطأ يفيد أنّها للقراءة فقط read only. الأعضاء الساكنة Static Members هي أعضاء يمكن استدعاؤها مباشرةً من الصنف الذي صُرّحت ضمنه، وليس من كائن مُنشَأ من هذا الصنف. يمكن أن نجعل أيّ عضو ساكن وذلك بوسمه بالكلمة المحجوزة static. يوضّح البرنامج Lesson07_04 استخدام التوابع الساكنة. لاحظ وجود الكلمة المحجوزة static بعد محّدد الوصول public: 1 using System; 2 3 namespace Lesson07_04 4 { 5 class Calculator 6 { 7 public static double Addition(double x, double y) 8 { 9 return x + y; 10 } 11 12 public static double Minus(double x, double y) 13 { 14 return x - y; 15 } 16 17 public static double Division(double x, double y) 18 { 19 if (y == 0) 20 { 21 return double.NaN; 22 } 23 else 24 { 25 return x / y; 26 } 27 } 28 29 public static double Multiplication(double x, double y) 30 { 31 return x * y; 32 } 33 } 34 35 class Program 36 { 37 static void Main(string[] args) 38 { 39 double x = 5; 40 double y = 9; 41 42 double addition = Calculator.Addition(x, y); 43 double minus = Calculator.Minus(x, y); 44 double multiplication = Calculator.Multiplication(x, y); 45 double division = Calculator.Division(x, y); 46 47 Console.WriteLine("{0} + {1} = {2}", x, y, addition); 48 Console.WriteLine("{0} - {1} = {2}", x, y, minus); 49 Console.WriteLine("{0} * {1} = {2}", x, y, multiplication); 50 Console.WriteLine("{0} / {1} = {2}", x, y, division); 51 } 52 } 53 } نفّذ البرنامج السابق لتحصل على الخرج التالي: 5 + 9 = 14 5 - 9 = -4 5 * 9 = 45 5 / 9 = 0.555555555555556 أنشأنا الصنف Calculator الذي يحتوي على التوابع الساكنة Addition و Minus و Multiplication و Division. إذا انتقلنا إلى التابع Main (الذي هو بالمناسبة تابع ساكن بسبب وجود الكلمة static) انظر إلى السطر 42 كيف استدعينا التابع Addition من الصنف Calculator مباشرةً بدون إنشاء أي كائن من هذا الصنف. سنكرّر نفس العمليّة من أجل التوابع Minus و Multiplication و Division. أمرٌ أخير. انظر إلى محتوى التابع الساكن Division، ستجد أنّنا نختبر قيمة y فيما إذا كانت تساوي الصفر أم لا. فإذا كانت قيمة y تساوي الصفر فإنّه لا يجوز القسمة على صفر. لذلك فنرجع double.NaN وهو عبارة عن ثابت يُعبّر عن عدم وجود قيمة عدديّة. وهذا أمر طبيعي لأنّ القسمة على صفر لن تعطينا عدد. إذا استبدلت قيمة y في السطر 40 من البرنامج السابق بالقيمة 0 سنحصل على الخرج التالي: 5 + 0 = 5 5 - 0 = 5 5 * 0 = 0 5 / 0 = NaN لاحظ السطر الأخير من البرنامج كيف يبدو منطقيًّا تمامًا. يمكننا تعميم نفس المفهوم السابق بالنسبة للخصائص والحقول ضمن الصنف بجعلها ساكنة وذلك بإضافة الكلمة المحجوزة static بعد محدّد الوصول مباشرةً. بقي أن نشير إلى أنّه من غير الممكن استخدام الكلمة المحجوزة this ضمن أي عضو ساكن والسبب كما أعتقد واضح. يُشير this إلى الكائن الذي يحدث من ضمنه الاستدعاء. ولكن في الأعضاء الساكنة فإنّنا نجري الاستدعاءات للتوابع أو الخصائص من الصنف المصرّحة ضمنه مباشرةً، لذلك فاستخدام this لن يكون له أيّ معنى. تمارين داعمة تمرين 1 أجرِ تعديلًا على البرنامج Lesson07_03 بحيث يُضيف الخاصيّة Tel (قابلة للقراءة وللكتابة) التي تمثّل رقم الهاتف للموظّف Employee، ثمّ أجرِ التعديل المناسب على التابع DisplayInfo لكي يعرض قيمة هذه الخاصيّة على سطر منفصل كما يفعل مع بقيّة الخصائص. تمرين 2 أنشئ صنفًا سمّه StaticDemo بحيث يحتوي على خاصيّة ساكنة اسمها Counter من النوع int. عند كل إنشاء لكائن من هذا الصنف يجب زيادة قيمة هذه الخاصيّة بمقدار 1 وبشكل تلقائيّ. (تلميح: يمكنك كتابة العبارة البرمجيّة المسؤولة عن زيادة قيمة الخاصيّة Counter ضمن بانيّة الصنف StaticDemo التي ليس لها وسائط.) الخلاصة تعرّفنا في هذا الدرس على كيفيّة التعامل مع الخصائص، والتي تمثّل أسلوبًا أكثر تطوّرًا من الحقول لتشكّل مزايا الصنف. كما اتفقنا أنّه ينبغي على الحقول أن تكون داخليّة بالنسبة للصنف باستخدام محدّد الوصول private، وتعرّفنا أيضًا على الأعضاء الساكنة static members وكيفيّة التعامل معها.
    1 نقطة
  3. طبيعي ان مفيش تعامل مسبق مع شخص ان هيكون في شعور بالخوف ان الشخص ده ياكل حقي وفي نفس الجهة الاخري العميل هيكون خايف انك تسرق فلوسه انت كمصمم لابد انك تضمن حقك بتلت المبلغ قبل التصميم والثلثين الاخري بعد الانتهاء من التصميم او علي الاقل عربون 15% ولابد انك تعطي انطباع او شعور جيد عند العميل انه يثق فيك وفي اسلوبك انك لست مادي وكل هامك الفلوس ولست مهتم ايضا بخدمته بشكل جيد انت بتقدم منتج مقابل مادي فلابد يكون عندك ذكاء في التعامل عشان تقدر تكسب صح وكتير هتقابل الي هينصب عليك وحصلت لينا كتير وحتي بعد العربون كان يستلم الشغل ويهرب عادي كل وحد بياخد قيمته فانتا مع الوقت هتتعلم وهتقدر تميز العميل الصادق او جاد ام لا
    1 نقطة
  4. أنا باحث رياضيات لست مختص بالبرمجة ولكنى أقوم ببحث يسهل من عملية فك تشفير RSA و توليد أعداد أولية . حاليا أنا في مرحلة اختبار المعادلات على أعداد كبيرة و نظرا لعدم خبرتي فى مجال البرمجة لا استطيع القيام باختبار عملي خلاصة الكلام أنني اختبر رقم 100 خانة المفروض أنّه لدى قيم ل t داخل فترة من الأعداد السالبة و المطلوب تجربة كل القيم بهذه الفترة لإيحاد T التي تحقق n^2+36t^2+12nt-4n-20t يكون عددا مربعا له جذر صحيح مع العلم أن قيمة n معلومة و هي قيمة ثابتة فأرجو ممن يود التعاون مساعدتي في الأمر و من يعلم قد نقوم بفك عدد RSA-1024
    1 نقطة
×
×
  • أضف...