اذهب إلى المحتوى

لوحة المتصدرين

  1. صابر مغترب

    صابر مغترب

    الأعضاء


    • نقاط

      3

    • المساهمات

      14


  2. عبدالباسط ابراهيم

    • نقاط

      2

    • المساهمات

      4894


  3. عمار معلا

    عمار معلا

    الأعضاء


    • نقاط

      1

    • المساهمات

      465


  4. Ali Ahmed6

    Ali Ahmed6

    الأعضاء


    • نقاط

      1

    • المساهمات

      85


المحتوى الأكثر حصولًا على سمعة جيدة

المحتوى الأعلى تقييمًا في 11/28/23 في كل الموقع

  1. السلام عليكم اي هي الحزمه google الموجود فيه لغة باثيون ؟ وهل هي مكتبه ام اطاره عمل ؟ وكمان اي هو googlemaps ؟ يعني انا ازي استفيد من الحاجات ده ؟
    1 نقطة
  2. ماذا يمكنني العمل بعد ان انهي دوره علوم الحاسوب ؟
    1 نقطة
  3. السلام عليكم ورحمة الله وبركاته كيف اعمل فلتر لعدم نشر اي مقال يكتبه الاعضاء الا بعد موافقة الادمن على ذلك مراجعة المقال ثم الموافقة ويتم نشره على الصحفة الرئيسية للمقالات
    1 نقطة
  4. بشكل أعم، هناك عدة حزم توفر واجهات لخدمات Google. ومن بين هذه الحزم، يمكن الإشارة إلى google-api-python-client و googlemaps كحزم مهمة تستخدم للتفاعل مع بعض خدمات Google. وهي مجموعة من المكتبات التي تتكامل مع باييثون للأغراض التي تستوفيها. فـ Google Maps Platform هي مجموعة من الخدمات التي تقدمها Google لتكامل خرائط Google ومعلومات الموقع في تطبيقات الويب والهواتف المحمولة والتطبيقات الأخرى. تقدم Google Maps Platform APIs للمطورين لديهم إمكانية إضافة ميزات مثل خرائط متقدمة، والتوجيه، والبحث عن الأماكن، والتشويق، والعديد من الخدمات الأخرى في تطبيقاتهم. وهو الأمر الذي يمكنك بوساطة هاته المكتبة القيام به في تطبيق بايثون.
    1 نقطة
  5. كتبت الكود التالي: masig = input("Enter your masig :") واريد إذا كتب الشخص في الرساله thnk you يرد عليه تلقائي Welcom محتاج مساعده بسرعه
    1 نقطة
  6. وعليكم السلام السودكود هو وصف لخوارزمية بطريقة قريبة من اللغة البرمجية لكنها ليست مكتوبة وفق قواعد برمجية ولا يتطلب منك التقييد التام في كتابة شكل كل بلوك بنفس الكيفية لكل خوارزمية، فقط تقوم بكتابة خطوات كل خطوة من اسمها يوضح ما تقول به وسوف ترى السودكود منتشر بكثرة في الابحاث أو الكتب التي تحوي معلومات عن الخوارزميات فليس هناك لغة محددة لذلك، يتم كتابة السودكو وانت من خلال ذلك تستطيع تحويله إلى لغتك المفضلة لا اتصور أنك سوف تقوم باستخدام السودكود طيلة فترة حياتك الا في حال دراستك بالجامعة وتقديم مقررات تتعلق بالخوارزميات
    1 نقطة
  7. السلام عليكم لا استطيع اضافه عروض جديده على المشروعات لقد وصلت 12 عرض فهل يمكنني حذف العروض المستبعدة والمغلقة وكيف يمكنني حل هذا الامر
    1 نقطة
  8. كما في التعليق السابق وضح عمر أنه لا يمكن إضافة أكثر من 12 عرض ولكن الحلول المتوفرة هو عند مرور 15 يوماً حيث أنه بعد 15 يوم يبدأ مستقل بإغلاق المشاريع الغير منفذة طوال ال 15 يوم كما أنه إذا تم لمرحلة التنفيذ في أحد المشاريع يُفتح لك عرض من عروضك و يمكن أيضاً خلال هذا الوقت أن يتم إغلاق المشروع من قبَل صاحب المشروع وقتها يكون متاح إضافة عروض جديدة
    1 نقطة
  9. نعم هذا صحيح لأن مستقل لا يسمح بتقديم اكثر من 12 عرض بنفس الوقت وحتى يذهب العرض يجب ان يمر عليه 15 يوم أو ان يحذف المشروع الذي قدمتي عليه العرض او يتم قبوله. هنالك حل ثاني لهذه المشكلة وهو ان تقومي بشراء عروض اضافية من مستقل.
    1 نقطة
  10. شهد الذكاء الاصطناعي Artificial Intellegence تحولًا ملحوظًا في العقد الأخير من الزمن، حيث خرج من عوالم الخيال العلمي إلى حياتنا اليومية. إنه القوة المُشغّلة للمساعدين الافتراضيين وأدوات التشخيص الطبي المتطورة والسيارات ذاتية القيادة وعمليات صنع القرار المعتمدة على البيانات في مختلف الصناعات وعدد لا يحصى من التطبيقات الأخرى التي تعيد تعريف كيفية تفاعلنا مع التكنولوجيا. ولكن ما الذي يُمكّن ثورة الذكاء الاصطناعي هذه بالضبط؟ خلف الكواليس، إنه عالم مكتبات وأطر عمل الذكاء الاصطناعي الرائع. مكتبات وأطر عمل الذكاء الاصطناعي هي من يمكّن المطورين من تحويل مفاهيم الذكاء الاصطناعي إلى واقع. فهي توفر اللبنات الأساسية والأدوات والموارد اللازمة لصياغة أنظمة ذكية، مما يجعل عملية التطوير أكثر كفاءة ويمكن تحقيقها أكثر من أي وقت مضى. في هذه المقالة الشاملة لمكتبات وأطر عمل الذكاء الاصطناعي، سنكشف عن أهمية مكتبات وأطر عمل الذكاء الاصطناعي ونفهم سبب أهميتها ونتعمق في أهم وأبرز الخيارات التي تساعد مطوري الذكاء الاصطناعي في جميع أنحاء العالم على أداء مهامهم. الفرق بين مكتبات الذكاء الاصطناعي وأطر عمل الذكاء الاصطناعي مكتبات الذكاء الاصطناعي عبارة عن مقتطفات أو وحدات برمجية مكتوبة مسبقًا توفر عددًا كبيرًا من الدوال Functions والأصناف Classes المصممة لأداء مهام محددة. يمكن أن تتراوح هذه المهام من معالجة اللغة الطبيعية NLP والرؤية الحاسوبية CV إلى التعلم المعزز RL والتعلم العميق DL. على عكس الأطر، لا تفرض المكتبات بنية محددة على المشروع بأكمله. وبدلاً من ذلك، فهي تقدم حلولاً محددة للمشكلات المستهدفة، مما يجعلها أدوات متعددة الاستخدامات للمطورين. عمومًا، تتصف أطر العمل بما يلي: الكفاءة: تعمل أطر عمل الذكاء الاصطناعي على تبسيط عملية التطوير من خلال توفير الأدوات والمكتبات والوظائف المعدة مسبقًا، مما يقلل حاجة المطورين إلى إعادة اختراع العجلة. تعمل هذه الكفاءة على تسريع تطوير مشروع الذكاء الاصطناعي. قابلية التوسع: توفر أطر العمل قابلية التوسع، مما يسمح للمطورين بالانتقال من التجربة على جهاز واحد إلى نشر النماذج على مجموعات من الأجهزة القوية أو حتى بيئات الحوسبة الموزعة. دعم المجتمع: تتمتع العديد من أطر عمل الذكاء الصناعي بدعم مجتمعي واسع النطاق. يُترجم هذا إلى ثروة من الموارد والبرامج التعليمية ومجتمع من المطورين الذين يمكنهم المساعدة في حل المشكلات، مما يجعل التطوير أكثر سلاسة. قابلية التشغيل البيني: غالبًا ما تدعم أطر عمل الذكاء الصناعي لغات برمجة متعددة ويمكن دمجها مع أدوات أخرى، مما يعزز مرونتها وتوافقها مع الأنظمة الحالية. تحسين الأداء: تتضمن تقنيات التحسين لجعل نماذج الذكاء الصناعي تعمل بشكل أسرع وتستهلك موارد أقل، وهو أمر بالغ الأهمية للتطبيقات التي تعمل في الزمن الحقيقي Real Time والأجهزة محدودة الموارد. باختصار، تعمل مكتبات وأطر الذكاء الصناعي على تمكين المطورين من التركيز على بناء نماذج الذكاء الصناعي وتحسينها بدلًا من التورط في تعقيدات التنفيذ على المستوى المنخفض، مما يجعل تطوير الذكاء الصناعي أكثر سهولة وكفاءة. لمزيد من التفاصيل، ارجع إلى مقال تعرف على مفهوم إطار العمل Framework وأهميته في البرمجة. أطر عمل الذكاء الاصطناعي تبرز أطر عمل الذكاء الاصطناعي باعتبارها الأساس الذي تُبنى عليه تطبيقات الذكاء الاصطناعي، إذ ذكرنا أن هذه الأطر عبارة عن حزم برمجية شاملة مصممة لتبسيط وتسريع عملية إنشاء نماذج وحلول الذكاء الاصطناعي. إنها توفر للمطورين صندوق أدوات مليء بالخوارزميات والمكتبات والأدوات المساعدة المعدة مسبقًا، مما يمكنهم من التركيز على الجوانب التطبيقية والإبداعية للذكاء الاصطناعي مع تجاوز الكثير من كتابة الشيفرات المعقدة منخفضة المستوى. أشهر أطر عمل الذكاء الاصطناعي سنذكر فيما يلي أطر عمل الذكاء الاصطناعي الأكثر شيوعًا والتي يعتمد عليها المطورون في إنشاء مشاريع الذكاء الاصطناعي الخاصة بهم وهي: تنسرفلو Tensorflow باي تورش PyTorch كيراس Keras تنسرفلو Tensorflow: إطار العمل الأكثر استخدامًا يعد تنسرفلو Tensorflow الذي طورته جوجل أحد أكثر أطر عمل الذكاء الاصطناعي مفتوحة المصدر استخدامًا وتنوعًا. يشتهر تنسرفلو بقابلية التوسع والمرونة، فهو تتيح للمطورين إنشاء شبكات عصبية كبيرة ومتطورة لتطبيقات الذكاء الاصطناعي المختلفة. أسلوب تنسرفلو في بناء الشبكات العصبية يُسهّل التوازي، مما يجعلها مثالية للتعامل مع معالجة البيانات على نطاق واسع. تمتد براعة تنسرفلو إلى أبعد من مجرد التعلم العميق. يشتمل نظامها البيئي على أدوات للمعالجة المسبقة للبيانات وتقييم النماذج والنشر. بدءًا من الإصدار 2.0، تبنى إطار العمل هذا نهجًا أكثر سهولة في الاستخدام وأكثر بديهية من خلال تبسيط أسلوب بناء وتنفيذ الشبكات العصبية ودمج إطار العمل كيراس معه. تعمل هذه التحسينات على تمكين المطورين من التركيز على بناء النماذج بدلاً من التورط في تعقيدات التنفيذ. باي تورش PyTorch: إطار عمل الباحثين المفضل يلبي باي تورش PyTorch احتياجات الباحثين وممارسي الذكاء الاصطناعي الذين يحتاجون إلى تحكم دقيق في نماذجهم. طُور باي تورش بواسطة مختبر أبحاث الذكاء الاصطناعي في فيسبوك، ويتبع نموذجًا حوسبيًا ديناميكيًا، مما يسمح للمستخدمين بتعريف نماذجهم وتعديلها وتصحيحها وتجريبها بسهولة. كما أن النظام البيئي ecosystem أو العمل في بيئة باي تورش يعد مرنًا للغاية. على الرغم من أن الطبيعة الديناميكية لباي تورش توفر مزايا في البحث والتجريب، فقد تأتي على حساب الأداء في سيناريوهات إنتاج معينة. الجهود الأخيرة (مثل إدخال TorchScript) تهدف إلى سد هذه الفجوة لجعل باي تورش خيارًا متعدد الاستخدامات لكل من البحث والنشر. كيراس Keras: تبسيط التعلم العميق باستخدام واجهة برمجة تطبيقات سهلة الاستخدام ظهرت كيراس Keras، التي غالبًا ما توصف بأنها واجهة برمجة تطبيقات، كإطار عمل لكل من المبتدئين وحتى الممارسين ذوي الخبرة في مجال الذكاء الاصطناعي على حد سواء. طُور في البداية كمشروع مستقل مفتوح المصدر، وقد تم الآن دمجه بالكامل مع تنسرفلو. تكمن قوته الأساسية في بساطته وسهولة استخدامه. يتخلص كيراس من تعقيدات تنفيذ النموذج، مما يسمح للمطورين بإنشاء شبكات عصبية معقدة ببضعة أسطر من التعليمات البرمجية. يتبع كيراس نموذج برمجة تصريحي عالي المستوى، مما يجعله مثاليًا للتجربة السريعة والنماذج الأولية، حيث تتطلّب عملية بناء النماذج والتدريب الحد الأدنى من التعليمات البرمجية. تأتي هذه البساطة مع مفاضلة، إذ قد تفتقر كيراس إلى المرونة والتحكّم الدقيق الذي توفره أطر العمل ذات المستوى الأدنى مثل تنسرفلو وباي تورش. أطر عمل الذكاء الاصطناعي الأقل شهرة بالإضافة إلى أطر عمل الذكاء الاصطناعي المعروفة مثل تنسرفلو و باي تورش وكيراس، هناك العديد من الأطر القوية الأخرى التي اكتسبت شعبية في مجتمع الذكاء الاصطناعي. نذكر منها: كافي Caffe: طوره مركز BVLC ويتميز بسرعته وكفاءته في مهام تصنيف الصور. سينتك CNTK: يوفر أداءً عاليًا وقابلية للتوسع لمهام التعلم العميق. وهو يدعم العديد من هياكل الشبكات العصبية وقد تم استخدامه في مهام تتراوح من التعرف على الصور والكلام إلى معالجة اللغة الطبيعية. إم إكس نت MXNet: طورته شركة أباتشي Apache، هو إطار عمل بارز آخر مصمم لتحقيق أهداف الكفاءة والمرونة. يتميّز بقدرته على التكيف مع الشبكات العصبية الديناميكية. ساهم دعمه للغات برمجية متعددة، بما في ذلك بايثون وجوليا، في اعتماده على نطاق واسع. فاست إي آي Fast.ai: هو إطار عمل يتميز بتركيزه على إضفاء الطابع الديمقراطي على تعليم الذكاء الاصطناعي (جعل تعليم الذكاء الصناعي وموارده في متناول مجموعة واسعة من الأشخاص، بغض النظر عن خلفيتهم أو خبرتهم). يوفر واجهات برمجة تطبيقات ومكتبات سهلة الاستخدام لتبسيط مهام التعلم العميق المعقدة. هذا يجعله اختيارًا ممتازًا للمبتدئين والباحثين الذين يرغبون في تجربة نماذج الذكاء الاصطناعي ونماذجها بسرعة. أخيرًا ثيانو Theano: استخدم على نطاق واسع في الماضي لمهام التعلم العميق بسبب حسابه الفعال للتعابير الرياضية. على الرغم من أن ثيانو لم يعد نشطًا كما في السابق، إلا أنه لعب دورًا مهمًا في تشكيل مشهد أطر عمل الذكاء الاصطناعي الصناعي. تستمر هذه الأطر، جنبًا إلى جنب مع غيرها من الأطر التي لم تُذكر مثل تشينر Chainer و Deeplearning4j وأونكس ONNX، في إثراء برمجة الذكاء الاصطناعي، مما يوفر خيارات متنوعة للمطورين والباحثين للاستكشاف والابتكار في مجال الذكاء الاصطناعي. اختيار إطار العمل المناسب لمشروعك يمكن أن يؤثر اختيار إطار العمل بشكل كبير على فعالية وكفاءة مشاريع الذكاء الاصطناعي. نتيجةً لكون مجال الذكاء الاصطناعي متنوع وديناميكي، ظهرت بعض الأطر كمعايير صناعية نظرًا لتعدد استخداماتها وأدائها وأدواتها الواسعة المصممة لمهام الذكاء الاصطناعي. يعد فهم نقاط القوة والضعف في مختلف أطر العمل أمرًا ضروريًا لاتخاذ قرارات مستنيرة عند البدء في مشاريع الذكاء الاصطناعي. تلعب عوامل مثل تعقيد النموذج وسهولة نشر النموذج ودعم المجتمع والتكامل مع التقنيات الأخرى دورًا في تحديد الأدوات التي تتوافق مع أهداف المشروع. نشرع في هذا القسم للحديث عن هذه العوامل بشيء من التفصيل. هنالك عدة عوامل يجب مراعاتها لمتطلبات المشروع ومهارات الفريق والأهداف، إذ يتضمن اختيار إطار العمل لمشروع الذكاء الاصطناعي الخاص بك تحليلًا مدروسًا لعدة عوامل. تشكل هذه العوامل مجتمعة الأساس الذي سيُبنى عليه مشروعك، نذكر منها: متطلبات المشروع: تُعد طبيعة مشروع الذكاء الصناعي الخاص بك اعتبارًا أساسيًا. هل تقوم بتطوير تطبيق رؤية حاسب أو أداة معالجة لغة طبيعية أو نظام توصية؟ قد يستفيد كل مجال من مجموعة مختلفة من الأدوات. التعقيد: ضع في اعتبارك مدى تعقيد المشكلة التي تحاول حلها. تتفوق بعض الأطر في التعامل مع العمليات الحسابية المعقدة، بينما يتناسب البعض الآخر بشكل أفضل مع المهام الأبسط. قابلية التوسع: هل سيحتاج مشروعك إلى التوسع مع البيانات المتزايدة ومتطلبات المستخدمين؟ توفر بعض الأطر خيارات أفضل لتحسين الأداء وقابلية التوسع. المجتمع والتوثيق: يمكن أن تكون المجتمعات القوية والوثائق الشاملة ذات قيمة لا تقدر بثمن عند استكشاف المشكلات وإصلاحها أو طلب التوجيه. مهارات الفريق: قم بتقييم خبرة فريق التطوير لديك. يمكن أن يؤدي اختيار لغة وإطار عمل مألوفين لفريقك إلى تسريع عملية التطوير وضمان مستوى أعلى من جودة التعليمات البرمجية. التكامل: ضع في اعتبارك مدى سهولة تكامل الإطار المختار مع الأدوات والخدمات وأنظمة التشغيل والمنصات الأخرى التي قد تحتاج إلى استخدامها. الصيانة طويلة المدى: التخطيط للمستقبل. تأكد من أن إطار العمل الذي تختاره له خارطة طريق للتحديثات والصيانة. توفر الموارد: يمكن أن يؤثر توفر الأدوات والموارد بشكل كبير على سرعة التطوير وكفاءته. سهولة الاستخدام: بعض الأطر أكثر سهولة في الاستخدام، مما يجعلها مثالية للمبتدئين. يوفر البعض الآخر مزيدًا من التحكم والمرونة للمطورين ذوي الخبرة. يعد اختيار لغة البرمجة والإطار المناسبين لمشروع الذكاء الاصطناعي الخاص بك قرارًا استراتيجيًا يتطلب تقييمًا شاملاً لمتطلبات المشروع وقدرات الفريق والأهداف طويلة المدى. توفر الخيارات الكثيرة المتاحة اليوم للمطورين الأدوات اللازمة لإنشاء تطبيقات مبتكرة وقوية. من خلال النظر في هذه العوامل والاستلهام من دراسات الحالة الناجحة، يمكن للمطورين وضع مشاريعهم على طريق النجاح. قيود استخدام أطر عمل الذكاء الاصطناعي يمكن أن تؤثر القيود المرافقة لأطر عمل الذكاء الاصطناعي على تطوير تطبيقات الذكاء الاصطناعي ونشرها. هناك العديد من القيود، ويمكن أن تختلف هذه القيود بناءً على إطار العمل المحدد. تتضمن بعض القيود الشائعة ما يلي: الأداء: قد تواجه أطر عمل معينة للذكاء الاصطناعي صعوبة في التوسع للتعامل مع مجموعات البيانات الكبيرة أو النماذج المعقدة بكفاءة. يمكن أن ينتج عن ذلك أوقات تدريب أبطأ (بعض النماذج تحتاج أيام) وتطبيقات أقل استجابة (أي تستغرق وقت أطول لكي تعطيك النتيجة). التوافق: قد لا تكون بعض أطر عمل الذكاء الصناعي متوافقة مع أجهزة أو منصات معينة، مما يحد من قابليتها للاستخدام في بيئات معينة. التعقيد: يمكن أن تكون عملية بناء بعض نماذج الذكاء الصناعي غير سهلة، خاصة للمبتدئين. يمكن أن تعيق الأطر التي تفتقر إلى التوثيق والدعم عملية التعلّم. الافتقار إلى المرونة: قد تُقيّد بعض أطر عمل الذكاء الاصطناعي المطورين على خوارزميات ونماذج محددة مسبقًا، مما يقلل من مرونة تجربة الحلول المخصصة. قابلية التشغيل البيني Interoperability: تشير إلى القدرة على تبادل البيانات أو الوظائف بين نظم مختلفة أو برمجيات مختلفة دون الحاجة إلى تعديل هذه البرمجيات. يعد التحقق من قابلية التشغيل البيني أمرًا مهمًا في عالم تطوير البرمجيات والتكنولوجيا. يمكن أن تؤدي قابلية التشغيل البيني المحدودة بين أطر الذكاء الاصطناعي المختلفة ولغات البرمجة إلى إعاقة تكامل الأدوات والتقنيات المتعددة. ** الدعم المحدود**: قد يكون لبعض أطر عمل الذكاء الاصطناعي قاعدة مستخدمين أصغر، مما يؤدي إلى دعم مجتمعي محدود. مخاوف أمنية: يمكن أن تتسبب أطر عمل الذكاء الاصطناعي في حدوث ثغرات أمنية، مما قد يؤدي إلى كشف بيانات حساسة. منحنى التعلم: يمكن أن يؤدي تعقيد بعض أطر عمل الذكاء الاصطناعي إلى منحنى تعليمي حاد (أي ليس من السهل تعلمها)، مما يتطلب وقتًا وجهدًا كبيرين حتى تصبح بارعًا. على الرغم من هذه القيود، يعمل البحث والتطوير المستمر على مواجهة هذه التحديات. مكتبات الذكاء الاصطناعي إلى جانب أطر عمل الذكاء الاصطناعي، تلعب المكتبات دورًا مهمًا في تحويل الخوارزميات المعقدة إلى أدوات يسهل الوصول إليها. في حين أن أطر العمل مثل TensorFlow و PyTorch تهيمن على مشهد الذكاء الاصطناعي، فمن الضروري التعرف على خيارات أخرى تُستخدم في تطوير الذكاء الاصطناعي وهي المكتبات. عكس أطر العمل، صممت المكتبات لتبسيط مهام محددة، حيث تقدم للمطورين وحدات ودوال مُعدة مسبقًا يمكن دمجها بسهولة في مشاريعهم. دعونا نستكشف أهمية مكتبات الذكاء الاصطناعي. أشهر مكتبات الذكاء الاصطناعي البارزة هناك عدد كبير من المكتبات المستخدمة في برمجة الذكاء الاصطناعي وكل منها يُستخدم ضمن لغة برمجة معين. تتضمّن بايثون الحصة الأكبر من مكتبات الذكاء الاصطناعي، فلديها مجموعة واسعة من المكتبات التي تلبي مهام الذكاء الاصطناعي المختلفة. توفر هذه المكتبات للمطورين أدوات ودوال جاهزة لتبسيط عملية التطوير، من المعالجة المسبقة للبيانات إلى التدريب النموذجي والتقييم. فيما يلي بعض المكتبات الأساسية الضرورية لتطوير الذكاء الاصطناعي. هاغينغ فيس Hugging Face هاغينغ فيس Hugging Face اسم معروف في عالم الذكاء الاصطناعي وهي الخيار رقم واحد في معالجة اللغة الطبيعية، إذ قدمت مساهمات ملحوظة في مجال معالجة اللغات الطبيعية NLP. تأسست شركة Hugging Face في عام 2016، وقد اكتسبت شهرة بسبب مكتبتها مفتوحة المصدر، مثل مكتبة المحولات Transformers. توفر هذه المكتبة مجموعة واسعة من مجموعات البيانات والنماذج المدربة مسبقًا لمجموعة واسعة من مهام معالجة اللغات الطبيعية، بما في ذلك تصنيف النصوص وترجمة اللغة ونماذج اللغة وتحليل المشاعر. ما يميز Hugging Face هو التزامها بإضفاء الطابع الديمقراطي على الذكاء الاصطناعي ومعالجة اللغات الطبيعية من خلال جعل النماذج المتطورة في متناول المطورين والباحثين في جميع أنحاء العالم. مع مجتمع مزدهر من المساهمين، تُواصل Hugging Face الابتكار وقيادة التقدم وتعزيز التعاون في عالم معالجة اللغات الطبيعية. لقد أصبح مصدرًا لا غنى عنه لأي شخص يعمل في مشاريع الذكاء الاصطناعي المتعلقة باللغة. نمباي Numpy مكتبة خاصة بلغة بايثون وهي أساس العديد من مشاريع الذكاء الاصطناعي. توفر دعمًا للمصفوفات الكبيرة والمعقّدة والمتعددة الأبعاد، جنبًا إلى جنب مع مجموعة واسعة من الدوال الرياضية لعمليات المصفوفة. هذه المكتبة لا غنى عنها للمهام التي تنطوي على حسابات رقمية ومعالجة البيانات. باندا Pandas مكتبة خاصة بلغة بايثون. هي مكتبة قوية لتحليل البيانات ومعالجتها. يسمح هيكل DataFrame الخاص بها للمطورين بالتعامل مع البيانات المهيكلة ومعالجتها بكفاءة، مما يجعل المهام مثل تنظيف البيانات وتحويلها وتجميعها أكثر ملاءمة. سكايت ليرن scikit-Learn مكتبة خاصة بلغة بايثون. تُعرف هذه المكتبة أيضًا باسم sklearn، وهي نقطة انطلاق لمهام التعلم الآلي. يقدم مجموعة متنوعة من خوارزميات التعلم الآلي للتصنيف والانحدار والتكتّل وتقليل الأبعاد والمزيد. توفر بالإضافة إلى ذلك أدوات لتقييم النموذج واختيار الميزات والمعالجة المسبقة للبيانات. مجموعة أدوات اللغة الطبيعية NLTK مكتبة خاصة بلغة بايثون مصممة خصيصًا لمهام معالجة اللغة الطبيعية. توفر أدوات وموارد للتقطيع tokenization والتشذيب stemming، وتصنيف أجزاء الكلام POST، وتحليل المشاعر ، وأكثر من ذلك ، مما يجعله ضروريًا للمشاريع التي تتضمن بيانات نصية. سباسي spaCy مكتبة خاصة بلغة بايثون. مكتبة قوية أخرى لمهام معالجة اللغة الطبيعية، تركز سبايسي على توفير إمكانيات لمعالجة اللغة الطبيعية بطريقة سريعة وفعّالة. كما أنها تتفوق في مهام مثل التعرف على الكيانات المسماة NER وتحليل التبعية والتحليل اللغوي. جينسم Gensim مكتبة خاصة بلغة بايثون مصممة لنمذجة الموضوعات وتحليل تشابه المستندات. إنها مفيدة بشكل خاص للعمل مع مجموعات نصية كبيرة وإنشاء تمثيلات رقمية للنصوص باستخدام تقنيات مثل Word2Vec. إكس جي بوست XGBoost مكتبة خاصة بلغة بايثون ولغة R وهي مكتبة شهيرة وحديثة للتعلم الآلي. تحظى بشعبية خاصة بالنسبة للبيانات المُهيكلة (كالتي تُنظّم في جداول) وتستخدم على نطاق واسع في مسابقات التعلم الآلي. مكتبة OpenCV مكتبة خاصة بلغة بايثون ولغة C++‎ وتعد مصدرًا قويًا لمهام الرؤية الحاسوبية. فهي توفر أكثر من 2500 خوارزمية محسنة لتحليل الصور والفيديو في الوقت الفعلي. من التعرف على الوجه إلى اكتشاف الأشياء، تعد OpenCV واحدة من المكتبات المفضلة لمطوري الرؤية الحاسوبية. مكتبتي forecast و tseries وهي مكتبات خاصة بلغة R تُستخدم في تحليل السلاسل الزمنية، حيث تسهل حزم forecast و tseries التنبؤ بالبيانات المعتمدة على الوقت وتحليلها. مكتبتي sp و sf مكتبات خاصة بلغة R تُستخدم في التحليل المكاني، حيث تُمكّن المستخدمين من معالجة البيانات المكانية وتحليلها. هذه كانت مجموعة من أهم مكتبات الذكاء الاصطناعي. تعمل هذه المكتبات بشكل جماعي على تمكين المطورين من إنشاء تطبيقات ذكاء اصطناعي معقدة عبر مجالات متنوعة. من خلال الاستفادة من قدرات هذه المكتبات، يمكن لممارسي الذكاء الاصطناعي تسريع عملية التطوير وإنشاء نماذج أكثر قوة ودقة. فوائد مكتبات الذكاء الاصطناعي كما أشرنا سابقًا، هناك العديد من الفوائد التي يمكن الحصول عليها من خلال إنشاء واستخدام مكتبات الذكاء الاصطناعي، وهي كما يلي: سهولة الاستخدام: تعمل المكتبات على تبسيط الخوارزميات المعقدة، مما يسهل على المطورين فهم حلول الذكاء الاصطناعي وتنفيذها دون الخوض في تعقيدات الخوارزميات الأساسية. النماذج الأولية السريعة: يمكن للمطورين إنشاء نماذج أولية سريعة لأفكارهم باستخدام المكتبات، مما يسمح لهم باختبار الفرضيات وتجربة أساليب مختلفة قبل الالتزام بحل محدد. دعم المجتمع: تمامًا مثل أطر العمل، تتمتع المكتبات الشعبية بمجتمعات نابضة بالحياة. تساهم هذه المجتمعات في المكتبات من خلال توفير التحديثات وإصلاحات الأخطاء والوظائف الإضافية، مما يضمن بقاء المكتبات قوية ومحدثة. قابلية التخصيص: توفر المكتبات التوازن بين الحلول المعدة مسبقًا والتخصيص. يمكن للمطورين تعديل أجزاء معينة من كود المكتبة لتخصيص الدالة وفقًا لمتطلبات مشروعهم. كفاءة الموارد: تتميز المكتبات عمومًا بقلة حجمها مقارنةً بأطر العمل، مما يجعلها مناسبة للبيئات المحدودة الموارد مثل أجهزة إنترنت الأشياء. خاتمة لقد أضفت مكتبات وأطر الذكاء الاصطناعي قوةً كبيرةً على تطوير الذكاء الاصطناعي، مما مكّن كلاً من المحترفين المتمرسين والوافدين الجدد من تسخير قوة الذكاء الاصطناعي. سواء كنت تقوم ببناء روبوتات محادثة ذكية أو مركبات ذاتية التحكم أو أنظمة تحليلات تنبؤية، فإن هذه المكتبات والأطر تعمل كحلفاء لك في مجال الذكاء الصناعي. إن فهم مشهد مكتبا وأطر عمل الذكاء الاصطناعي هو الخطوة الأولى في الشروع في رحلة لإنشاء الجيل القادم من الأنظمة الذكية التي ستشكل عالمنا. اقرأ أيضًا تعلم الذكاء الاصطناعي لغات برمجة الذكاء الاصطناعي خوارزميات الذكاء الاصطناعي أهمية الذكاء الاصطناعي فوائد الذكاء الاصطناعي
    1 نقطة
  11. السودكود هو طريقة لوصف الخطوات التي يقوم بها برنامج ما بطريقة تشبه اللغة البرمجية، ولكن بدون استخدام أي لغة محددة, إنه ليس لغة برمجة فعلية، بل هو تمثيل أكثر تجريدًا للخوارزمية أو العمليات المخطط لتنفيذها. يهدف إلى جعل فهم الخوارزميات أسهل للمبرمجين والمستخدمين الآخرين الذين قد لا يكونون ملمين بتفاصيل البرمجة. كما انه يستخدم في مرحلة التصميم: يستخدم لتوضيح كيفية عمل البرنامج خلال مرحلة التصميم. يساعد في فهم وتفاوض الخوارزميات قبل تحويلها إلى لغة برمجة و مرحله التدريس والتواصل: يُستخدم في الشروح التعليمية وورش العمل لتبسيط الأفكار والخوارزميات، خاصةً مع الطلاب والمبتدئين في مجال البرمجة. لنفترض أننا نريد كتابة برنامج يطبع"Hello World" خمس مرات. باستخدام السودكود يمكننا كتابة ما يلي: Start For loop from 1 to 5: Print "Hello World" End هذا يوضح الخطوات بشكل مفهوم ومنطقي دون استخدام أي لغة معينة. ثم يمكن ترجمته لاحقاً إلى لغات مثل بايثون أو سي++ أو جافا. فهو مفيد لشرح وفهم الخوارزمية قبل البدء بالتطوير.
    1 نقطة
  12. الفرق بين return و print: 1. print تطبع اما return ترجع قيمة . 2. print تستعمل في اي مكان اما return لا تستخدم إلا في الدوال فقط.
    1 نقطة
  13. السلام عليك احبتي اريد كود في بيثون لاستخراج النص المكتوب بخط اليد من الصوره ويعرض النتايج في عنصر نص او طباعته
    1 نقطة
  14. يمكنك استخدام مكتبة معالجة الصور المعروفة باسم OpenCV ومكتبة التعرف الضوئي على الحروف المعروفة باسم Tesseract. قبل البدء، يجب عليك تثبيت هذين المكتبتين في بيئتك الافتراضية باستخدام أداة إدارة الحزم مثل pip. يمكنك تثبيتهما باستخدام الأوامر التالية: pip install opencv-python pip install pytesseract بعد تثبيت المكتبتين، يمكنك استخدام الكود التالي لاستخراج النص من الصورة: import cv2 import pytesseract # تحميل الصورة image = cv2.imread('path/to/image.jpg') # تحويل الصورة إلى اللون الرمادي gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # تطبيق تعديلات على الصورة لتحسين التعرف على الحروف gray = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] gray = cv2.medianBlur(gray, 3) # استخراج النص من الصورة باستخدام Tesseract text = pytesseract.image_to_string(gray, lang='eng') # طباعة النص المستخرج print(text)
    1 نقطة
  15. استاذي استخرج لي = RESTART: C:/Users/وضاح/Desktop/استخراج_النصوص/73.py Gree OE Sos hoabe Gr!) 54) W095) A eas i aoe Coa OLS pase Leedy Lok Le ssit, gs ERE pe Ssh ebeiS alas a) Galas Gaia) fo lag ROWS: Aboas Ash agh dole rs les} DEES YUE sseae tte Klslaw| ph ja Aah CN 6 Due 6G) d6 jue: vel | id cyl) LASS ud eis Aes Seo. sf - pedo 236 sk
    1 نقطة
  16. السلام عليكم ورحمة الله وبركاته بشان تثبيت النظام على هارديس منفصل مع الوندوز عندي هارديس ثاني وحاب احط نظام لنكس على هارديس و الوندوز 10 على هارديس اخر في نفس الكمبيوتر بحيث يقلعون بوت اختار منه النظام المراد تشغيله ؟ مثل اليوم محتاج لنكس ادخل عليه واغلق شغل محتاجه عليه . وبعد كذا اخرج من النظام وارجع على الوندوز 10
    1 نقطة
  17. استاذي الفاضل الله يبارك فيك ساجرب الشفره واوفيك بالنتيجه حفظك الله ورعاك
    1 نقطة
  18. يمكنك القيام بذلك باستخدام مكتبة Tesseract OCR، لكن في بعض الأحيام قد تكون هناك حاجة إلى معالجة الصورة قبل استخدام Tesseract لتحسين النتائج. يجب عليك اولا تثبيت مكتبة Tesseract OCR و Pillow لمعالجة الصور باستخدام الأمر التالي: pip install pytesseract Pillow و هذا كود بسيط، يمكنك التعديل عليه على حسب احتياجاتك : from PIL import Image import pytesseract # تحديد مسار ملف Tesseract OCR إذا لزم الأمر # pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' def extract_text_from_image(image_path): # فتح الصورة image = Image.open(image_path) # استخراج النص من الصورة باستخدام Tesseract OCR text = pytesseract.image_to_string(image) return text # تحديد مسار الصورة image_path = 'path/to/your/image.png' # استخراج النص وطباعته result_text = extract_text_from_image(image_path) print(result_text) لا تنسى تغير image_path إلى مسار الصورة التي تريد استخراج النص منها.
    1 نقطة
×
×
  • أضف...