Ali Ahmed55 نشر الخميس في 18:39 أرسل تقرير نشر الخميس في 18:39 السلام عليكم اهو ممكن عندي بناء نموذج تعلم الاله او التعلم العميق استخدم عمودين في عمليه التنبوء يعني في الY يكون كده X = train[features] y = train[['efs', 'efs_time']] 1 اقتباس
0 Chihab Hedidi نشر الجمعة في 10:35 أرسل تقرير نشر الجمعة في 10:35 نعم يمكنك استخدام عمودين كهدف في عملية التنبؤ، لكن الأمر يعتمد على نوع المشكلة التي تعمل عليها وطبيعة النموذج الذي تستخدمه، إذا كنت تعمل على مشكلة تنبؤ متعددة الأهداف أي أنك ترغب في التنبؤ بقيمتين أو أكثر في آن واحد، يمكنك استخدام أعمدة متعددة في y، و يجب أن يكون النموذج قادر على معالجة المهام المتعددة، يمكن أن تستخدم مكتبات مثل Scikit-Learn باستخدام نماذج مثل MultiOutputRegressor أو MultiOutputClassifier، أو كحالة متقدمة و أكثر تعقيد يمكنك إستخادم مكتبة Keras/TensorFlow حيث تقوم ببناء شبكة عصبية ذات طبقات إخراج متعددة. و أيضا في بعض الحالات قد يكون أحد الأعمدة مثل efs_time مجرد دعم أو مدخل إضافي بدلا من أن يكون هدفا مستقلا، في هذه الحالة يمكنك دمج المعلومات الإضافية كميزات إضافية في X. 1 اقتباس
0 Ali Ahmed55 نشر الجمعة في 11:35 الكاتب أرسل تقرير نشر الجمعة في 11:35 بتاريخ 59 دقائق مضت قال Chihab Hedidi: نعم يمكنك استخدام عمودين كهدف في عملية التنبؤ، لكن الأمر يعتمد على نوع المشكلة التي تعمل عليها وطبيعة النموذج الذي تستخدمه، إذا كنت تعمل على مشكلة تنبؤ متعددة الأهداف أي أنك ترغب في التنبؤ بقيمتين أو أكثر في آن واحد، يمكنك استخدام أعمدة متعددة في y، و يجب أن يكون النموذج قادر على معالجة المهام المتعددة، يمكن أن تستخدم مكتبات مثل Scikit-Learn باستخدام نماذج مثل MultiOutputRegressor أو MultiOutputClassifier، أو كحالة متقدمة و أكثر تعقيد يمكنك إستخادم مكتبة Keras/TensorFlow حيث تقوم ببناء شبكة عصبية ذات طبقات إخراج متعددة. و أيضا في بعض الحالات قد يكون أحد الأعمدة مثل efs_time مجرد دعم أو مدخل إضافي بدلا من أن يكون هدفا مستقلا، في هذه الحالة يمكنك دمج المعلومات الإضافية كميزات إضافية في X. الف شكراا لحضرتكم اقتباس
السؤال
Ali Ahmed55
السلام عليكم
اهو ممكن عندي بناء نموذج تعلم الاله او التعلم العميق استخدم عمودين في عمليه التنبوء يعني في الY يكون كده
2 أجوبة على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.