Ail Ahmed نشر 12 يونيو أرسل تقرير مشاركة نشر 12 يونيو السلام عليكم هو خورزميات التعلم العميق افضل خورزميات من تعلم الاله ؟ 1 اقتباس رابط هذا التعليق شارك على الشبكات الإجتماعية More sharing options...
0 Mustafa Suleiman نشر 12 يونيو أرسل تقرير مشاركة نشر 12 يونيو كل منهما له نقاط قوة وضعف، فالتعلم العميق يتفوق في التعامل مع البيانات المعقدة والغير منظمة مثل الصور، الفيديو، والنصوص، والشبكات العصبية العميقة مثل الشبكات العصبية التلافيفية (CNN) والشبكات العصبية المتكررة (RNN) تكون فعالة جدًا في تلك الحالات. بينما تعلم الآلة التقليدي أفضل في الحالات التي تكون فيها البيانات بسيطة ومنظمة، مثل الجداول والمصفوفات، ومن الأمثلة على خوارزميات تعلم الآلة التقليدية فلديك الانحدار الخطي، أشجار القرار، والـ SVM. أيضًا التعلم العميق يحتاج إلى كميات ضخمة من البيانات للتدريب بشكل فعال، فكلما زادت البيانات، كلما كانت النتائج أفضل، وهو يعتبر "صندوق أسود" إلى حد كبير، مما يجعل من الصعب تفسير كيفية اتخاذ القرارات. ويتطلب موارد حسابية كبيرة، بما في ذلك وحدات معالجة الرسوميات GPU وأحيانًا وحدات معالجة متخصصة أخرى، ويحتاج وقتًا طويلاً للتدريب وتكلفة مالية عالية بسبب متطلبات الأجهزة والبيانات. بجانب أنه أكثر دقة في بعض التطبيقات، خاصة تلك التي تتطلب التعرف على الأنماط المعقدة. على العكس في تعلم الآلة التقليدي فيعمل بشكل جيد مع كميات أصغر من البيانات، وغالبًا ما تكون النماذج أكثر شفافية وأسهل في التفسير. وأقل تطلبًا من حيث الموارد المطلوبة لمعالجة البيانات، وأسرع وأقل تكلفة، خاصة في المراحل الأولية من المشروع، وفي بعض التطبيقات، يكون الأداء مشابهًا أو حتى أفضل من التعلم العميق، خصوصًا عندما تكون البيانات محدودة. 1 اقتباس رابط هذا التعليق شارك على الشبكات الإجتماعية More sharing options...
0 Ail Ahmed نشر 13 يونيو الكاتب أرسل تقرير مشاركة نشر 13 يونيو بتاريخ 17 ساعة قال Mustafa Suleiman: كل منهما له نقاط قوة وضعف، فالتعلم العميق يتفوق في التعامل مع البيانات المعقدة والغير منظمة مثل الصور، الفيديو، والنصوص، والشبكات العصبية العميقة مثل الشبكات العصبية التلافيفية (CNN) والشبكات العصبية المتكررة (RNN) تكون فعالة جدًا في تلك الحالات. بينما تعلم الآلة التقليدي أفضل في الحالات التي تكون فيها البيانات بسيطة ومنظمة، مثل الجداول والمصفوفات، ومن الأمثلة على خوارزميات تعلم الآلة التقليدية فلديك الانحدار الخطي، أشجار القرار، والـ SVM. أيضًا التعلم العميق يحتاج إلى كميات ضخمة من البيانات للتدريب بشكل فعال، فكلما زادت البيانات، كلما كانت النتائج أفضل، وهو يعتبر "صندوق أسود" إلى حد كبير، مما يجعل من الصعب تفسير كيفية اتخاذ القرارات. ويتطلب موارد حسابية كبيرة، بما في ذلك وحدات معالجة الرسوميات GPU وأحيانًا وحدات معالجة متخصصة أخرى، ويحتاج وقتًا طويلاً للتدريب وتكلفة مالية عالية بسبب متطلبات الأجهزة والبيانات. بجانب أنه أكثر دقة في بعض التطبيقات، خاصة تلك التي تتطلب التعرف على الأنماط المعقدة. على العكس في تعلم الآلة التقليدي فيعمل بشكل جيد مع كميات أصغر من البيانات، وغالبًا ما تكون النماذج أكثر شفافية وأسهل في التفسير. وأقل تطلبًا من حيث الموارد المطلوبة لمعالجة البيانات، وأسرع وأقل تكلفة، خاصة في المراحل الأولية من المشروع، وفي بعض التطبيقات، يكون الأداء مشابهًا أو حتى أفضل من التعلم العميق، خصوصًا عندما تكون البيانات محدودة. فهمت حضرتك يعني مفيش حاجه افضل من حاجه كل واحد منهم ليه استخدمات زي اي حاجه برد في مجال علوم الكمبيوتر مفيش مجال احسن من مجال او لغه احسن من لغه او اطاره عمل او حتي مكتبه شكراا لحضرتك جزاك الله كل خير اقتباس رابط هذا التعليق شارك على الشبكات الإجتماعية More sharing options...
السؤال
Ail Ahmed
السلام عليكم
هو خورزميات التعلم العميق افضل خورزميات من تعلم الاله ؟
رابط هذا التعليق
شارك على الشبكات الإجتماعية
2 أجوبة على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.