ظهور الخطأ ValueError: Input 0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 255 but received input with shape (None, 13) أثناء محاولة تدريب نموذج في Keras
قمت ببناء نموذج لتوقع أسعار المنازل باستخدام إطار العمل كيراس لكن ظهر لي الخطأ التالي:
from keras.datasets import boston_housing
import keras
(train_data, train_targets),(test_data, test_targets)= boston_housing.load_data()# توحيد البيانات
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
from keras import models
from keras import layers
# بناء النموذجdef build_model():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',
input_shape=(300,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(1))
model.compile(optimizer='rmsprop', loss="mse", metrics=['mae'])#بالشكل التالي compile هنا استخدمناها كدالة تكلفة وكمعيار عن طريق تمريره إلى الدالة #model.compile(optimizer='rmsprop', loss='mse', metrics=['mse'])return model
# تدريب النموذج
model = build_model()
model.fit(train_data, train_targets,epochs=8, batch_size=64)---------------------------------------------------------------------------ValueErrorTraceback(most recent call last)<ipython-input-14-2add221cc354>in<module>24# تدريب النموذج25 model = build_model()--->26 model.fit(train_data, train_targets,epochs=8, batch_size=64)~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)1098 _r=1):1099 callbacks.on_train_batch_begin(step)->1100 tmp_logs = self.train_function(iterator)1101if data_handler.should_sync:1102 context.async_wait()~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self,*args,**kwds)826 tracing_count = self.experimental_get_tracing_count()827with trace.Trace(self._name)as tm:-->828 result = self._call(*args,**kwds)829 compiler ="xla"if self._experimental_compile else"nonXla"830 new_tracing_count = self.experimental_get_tracing_count()~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self,*args,**kwds)869# This is the first call of __call__, so we have to initialize.870 initializers =[]-->871 self._initialize(args, kwds, add_initializers_to=initializers)872finally:873# At this point we know that the initialization is complete (or less~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)724 self._concrete_stateful_fn =(725 self._stateful_fn._get_concrete_function_internal_garbage_collected(# pylint: disable=protected-access-->726*args,**kwds))727728def invalid_creator_scope(*unused_args,**unused_kwds):~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self,*args,**kwargs)2967 args, kwargs =None,None2968with self._lock:->2969 graph_function, _ = self._maybe_define_function(args, kwargs)2970return graph_function
2971~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)33593360 self._function_cache.missed.add(call_context_key)->3361 graph_function = self._create_graph_function(args, kwargs)3362 self._function_cache.primary[cache_key]= graph_function
3363~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)3204 arg_names=arg_names,3205 override_flat_arg_shapes=override_flat_arg_shapes,->3206 capture_by_value=self._capture_by_value),3207 self._function_attributes,3208 function_spec=self.function_spec,~\anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)988 _, original_func = tf_decorator.unwrap(python_func)989-->990 func_outputs = python_func(*func_args,**func_kwargs)991992# invariant: `func_outputs` contains only Tensors, CompositeTensors,~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args,**kwds)632 xla_context.Exit()633else:-->634 out = weak_wrapped_fn().__wrapped__(*args,**kwds)635return out
636~\anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args,**kwargs)975exceptExceptionas e:# pylint:disable=broad-except976if hasattr(e,"ag_error_metadata"):-->977raise e.ag_error_metadata.to_exception(e)978else:979raiseValueError:in user code:
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:805 train_function *return step_function(self, iterator)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:795 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1259 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2730 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:3417 _call_for_each_replica
return fn(*args,**kwargs)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:788 run_step **
outputs = model.train_step(data)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:754 train_step
y_pred = self(x, training=True)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py:998 __call__
input_spec.assert_input_compatibility(self.input_spec, inputs, self.name)
C:\Users\Windows.10\anaconda3\lib\site-packages\tensorflow\python\keras\engine\input_spec.py:259 assert_input_compatibility
' but received input with shape '+ display_shape(x.shape))ValueError:Input0 of layer sequential is incompatible with the layer: expected axis -1 of input shape to have value 255 but received input with shape (None,13)
السؤال
Meezo ML
قمت ببناء نموذج لتوقع أسعار المنازل باستخدام إطار العمل كيراس لكن ظهر لي الخطأ التالي:
2 أجوبة على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.