اذهب إلى المحتوى

السؤال

Recommended Posts

  • 1
نشر

يمكنك استخدامه عن طريق الموديول:

sklearn.ensemble

الصيغة العامة:

sklearn.ensemble.ExtraTreesRegressor(n_estimators=100, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features='auto', max_leaf_nodes=None, bootstrap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)

n_estimators : عدد أشجار القرار المستخدمة.default=100
criterion: معيار قياس جودة التقسيم وتكون {“mse”, “mae”}, default=”mse”
max_depth :  عمق الأشجار.
min_samples_split:الحد الأدنى لعدد العينات المطلوبة لتقسيم عقدة داخلية. int , default=2.
min_samples_leaf:  الحد الأدنى لعدد العينات المطلوبة في العقدة التي تمثل الاوراق.  default=1.
max_features:العدد المناسب من الفيتشرز التي يتم احتسابها {“auto”, “sqrt”, “log2”}.
في حال auto:
max_features=sqrt(n_features).
sqrt:
ax_features=sqrt(n_features).
log2:
max_features=log2(n_features).
None:
max_features=n_features.
إذا وضعت قيمة float:
max_features=int(max_features * n_features)
قيمة int:
سيتم أخذ ال features  عند كل تقسيمة ك max_features.
bootstrap: لتحديد فيما إذا كان سيتم استخدام عينات ال bootstrap عند بناء الأشجار. في حال ضبطها على true سيتم استخدام كامل البيانات لبناء كل شجرة. افتراضياً تكون False.
oob_score: لتحديد فيما إذا كان سيتم استخدام عينات out-of-bag لتقدير قيمة التعميم "generalization score". ويجب أن تكون bootstrap مضبوطة على True لاستخدامها.
n_jobs: عدد المهام التي يتم تنفيذها بالتوازي. -1 للتنفيذ بأقصى سرعة ممكنة.
random_state: يتحكم بعملية التقسيم افتراضياً يكون None.
verbose: لعرض التفاصيل التي تحدث في التدريب. افاراضياً 0 أي لايظهر شيء، أما وضع أي قيمة أكبر من الصفر سيعرض التفاصيل int.
ccp_alpha: معامل تعقيد  يستخدم لتقليل التكلفة الزمانية والمكانية. non-negative float, default=0.0
التوابع:
fit(data): للقيام بعملية التدريب.
predict(data): لتوقع القيم.
score(data):  لتقييم كفاءة النموذج.
()get_depth: يرد عمق الشجرة.
ال attributtes:
n_outputs_: عدد المرخرجات الناتجة عن عملية ال fitting.
estimators_: عرض معلومات عن كل الأشجار التي تم تشكيلها.
base_estimator_:عرض معلومات الشجرة الأساسية.
n_features_: عدد الفيتشرز.
مثال:

# بيانات أسعار المنازل في مدينة بوسطن
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.ensemble import ExtraTreesRegressor
# تحميل الداتا
BostonData = load_boston()
data = BostonData.data
labels = BostonData.target
# تقسيم البيانات
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, shuffle =True, random_state=2021)
# DecisionTreeRegressor تطبيق 
extra = ExtraTreesRegressor(random_state=20)
extra.fit(X_train, y_train)
#حساب الدقة 
print('Train Score is : ' , extra.score(X_train, y_train)) # Train Score is :  1.0
print('Test Score is :  ' , extra.score(X_test, y_test)) # Test Score is :   0.8465469931793999
#حعرض التوقعات 
y_pred = extra.predict(X_test)
print(y_pred)

 

انضم إلى النقاش

يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.

زائر
أجب على هذا السؤال...

×   لقد أضفت محتوى بخط أو تنسيق مختلف.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   جرى استعادة المحتوى السابق..   امسح المحرر

×   You cannot paste images directly. Upload or insert images from URL.

  • إعلانات

  • تابعنا على



×
×
  • أضف...