
Meezo ML
الأعضاء-
المساهمات
197 -
تاريخ الانضمام
-
تاريخ آخر زيارة
نوع المحتوى
ريادة الأعمال
البرمجة
التصميم
DevOps
التسويق والمبيعات
العمل الحر
البرامج والتطبيقات
آخر التحديثات
قصص نجاح
أسئلة وأجوبة
كتب
دورات
كل منشورات العضو Meezo ML
-
كيف نقوم بتطبيق خوارزمية ExtraTreesClassifier باستخدام مكتبة Sklearn؟
-
كيف نقوم بتطبيق خوارزمية BaggingClassifier باستخدام مكتبة Sklearn؟
-
قمت ببناء مودل LogisticRegression لكن عند محاولة قياس الكفاءة يظهر لي الخطأالتالي: import numpy as np from tensorflow.keras.datasets import mnist from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from tensorflow.keras.utils import to_categorical from sklearn.metrics import f1_score,precision_score,recall_score,accuracy_score,log_loss (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train.shape image_size = x_train.shape[1] input_size = image_size * image_size x_train = np.reshape(x_train, [-1, input_size])/ 255 x_test = np.reshape(x_test, [-1, input_size]) / 255 #y_train = to_categorical(y_train) #y_test = to_categorical(y_test) t =LogisticRegression() t.fit(x_train, y_train) f1_score(y_test,t.predict(x_test)) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-1-bbb2bd2287ff> in <module> 15 t =LogisticRegression() 16 t.fit(x_train, y_train) ---> 17 f1_score(y_test,t.predict(x_test)) 18 19 #ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted']. ~\anaconda3\lib\site-packages\sklearn\metrics\_classification.py in f1_score(y_true, y_pred, labels, pos_label, average, sample_weight, zero_division) 1097 pos_label=pos_label, average=average, 1098 sample_weight=sample_weight, -> 1099 zero_division=zero_division) 1100 1101 ~\anaconda3\lib\site-packages\sklearn\metrics\_classification.py in fbeta_score(y_true, y_pred, beta, labels, pos_label, average, sample_weight, zero_division) 1224 warn_for=('f-score',), 1225 sample_weight=sample_weight, -> 1226 zero_division=zero_division) 1227 return f 1228 ~\anaconda3\lib\site-packages\sklearn\metrics\_classification.py in precision_recall_fscore_support(y_true, y_pred, beta, labels, pos_label, average, warn_for, sample_weight, zero_division) 1482 raise ValueError("beta should be >=0 in the F-beta score") 1483 labels = _check_set_wise_labels(y_true, y_pred, average, labels, -> 1484 pos_label) 1485 1486 # Calculate tp_sum, pred_sum, true_sum ### ~\anaconda3\lib\site-packages\sklearn\metrics\_classification.py in _check_set_wise_labels(y_true, y_pred, average, labels, pos_label) 1314 raise ValueError("Target is %s but average='binary'. Please " 1315 "choose another average setting, one of %r." -> 1316 % (y_type, average_options)) 1317 elif pos_label not in (None, 1): 1318 warnings.warn("Note that pos_label (set to %r) is ignored when " ValueError: Target is multiclass but average='binary'. Please choose another average setting, one of [None, 'micro', 'macro', 'weighted']. ما الحل؟
-
ظهور الخطأ التالي ValueError: bad input shape عند محاولة تدريب نموذج باستخدام خوارزمية MultinomialNB. الكود مع الخطأ: import numpy as np from sklearn.naive_bayes import MultinomialNB from tensorflow.keras.utils import to_categorical from tensorflow.keras.datasets import mnist from sklearn.metrics import accuracy_score (X, Y),(Xtest, Ytest) = mnist.load_data() Y = to_categorical(Y) Ytest = to_categorical(Ytest) X = np.reshape(X, [-1, X.shape[1]*X.shape[1]]) Xtest = np.reshape(Xtest, [-1, input_size]) M =MultinomialNB() M.fit(X, Y) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-19-161d6ac448e8> in <module> 10 Xtest = np.reshape(Xtest, [-1, input_size]) 11 t =MultinomialNB() ---> 12 t.fit(X, Y) 13 accuracy_score(Ytest,t.predict(Xtest)) # 0.8357 ~\anaconda3\lib\site-packages\sklearn\naive_bayes.py in fit(self, X, y, sample_weight) 607 self : object 608 """ --> 609 X, y = self._check_X_y(X, y) 610 _, n_features = X.shape 611 self.n_features_ = n_features ~\anaconda3\lib\site-packages\sklearn\naive_bayes.py in _check_X_y(self, X, y) 473 474 def _check_X_y(self, X, y): --> 475 return check_X_y(X, y, accept_sparse='csr') 476 477 def _update_class_log_prior(self, class_prior=None): ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator) 758 dtype=None) 759 else: --> 760 y = column_or_1d(y, warn=True) 761 _assert_all_finite(y) 762 if y_numeric and y.dtype.kind == 'O': ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in column_or_1d(y, warn) 795 return np.ravel(y) 796 --> 797 raise ValueError("bad input shape {0}".format(shape)) 798 799 ValueError: bad input shape (60000, 10)
-
كيف نقوم بتطبيق خوارزمية VotingRegressor لمهمة توقع باستخدام مكتبة Sklearn ؟
-
كيف نفوم بتطبيق خوارزمية AdaBoostClassifier باستخدام مكتبة Sklearn؟
-
أحاول أن أقوم بترميز النص باستخدام ال TF-IDF لكن يظهر لي الخطأ ValueError: np.nan is an invalid document, expected byte or unicode string. في هذا المقطع البرمجي التالي: from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd data = pd.read_csv("train.csv") tfidf = TfidfVectorizer(encoding='utf-8',decode_error='replace') enc = tfidf.fit_transform(data['tweets']) ما السبب؟ ظهور الخطأ ValueError: np.nan is an invalid document, expected byte or unicode string عند محاولة ترميز النص باستخدام TfidfVectorizer
-
كيف نقوم بتطبيق الترميز CountVectorizer باستخدام مكتبة Sklearn؟
-
ماهي ال AffinityPropagation و كيف يتم تطبيقها في Sklearn؟
-
ماهو ال DBScan وكيف نقوم بتطبيقه باستخدام مكتبة Sklearn؟
-
ظهور الخطأ التالي ValueError: Found array with dim 3. Estimator expected <= 2 عند محاولة تدريب نموذج باستخدام خوارزمية MultinomialNB؟ import numpy as np from tensorflow.keras.datasets import mnist from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from tensorflow.keras.utils import to_categorical from sklearn.metrics import f1_score,precision_score,recall_score,accuracy_score,log_loss (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train.shape t = Pipeline([('clf',MultinomialNB())]) t = text_clf.fit(x_train, y_train) accuracy_score(y_test,t.predict(x_test)) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-25-434bf8f46433> in <module> 10 # تعريف pipline 11 t = Pipeline([('clf',MultinomialNB())]) ---> 12 t = text_clf.fit(x_train, y_train) 13 accuracy_score(y_test,t.predict(x_test)) ~\anaconda3\lib\site-packages\sklearn\pipeline.py in fit(self, X, y, **fit_params) 352 self._log_message(len(self.steps) - 1)): 353 if self._final_estimator != 'passthrough': --> 354 self._final_estimator.fit(Xt, y, **fit_params) 355 return self 356 ~\anaconda3\lib\site-packages\sklearn\naive_bayes.py in fit(self, X, y, sample_weight) 607 self : object 608 """ --> 609 X, y = self._check_X_y(X, y) 610 _, n_features = X.shape 611 self.n_features_ = n_features ~\anaconda3\lib\site-packages\sklearn\naive_bayes.py in _check_X_y(self, X, y) 473 474 def _check_X_y(self, X, y): --> 475 return check_X_y(X, y, accept_sparse='csr') 476 477 def _update_class_log_prior(self, class_prior=None): ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator) 753 ensure_min_features=ensure_min_features, 754 warn_on_dtype=warn_on_dtype, --> 755 estimator=estimator) 756 if multi_output: 757 y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False, ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 572 if not allow_nd and array.ndim >= 3: 573 raise ValueError("Found array with dim %d. %s expected <= 2." --> 574 % (array.ndim, estimator_name)) 575 576 if force_all_finite: ValueError: Found array with dim 3. Estimator expected <= 2.
-
كيف نقوم بتطبيق الترميز TF-IDF باستخدام مكتبة Sklearn؟
-
كيفية تطبيق معيار f1-score في مكتبة Sklearn لقياس كفاءة نموذج؟
-
كيفية تطبيق One-Hot Encoding باستخدام مكتبة Sklearn؟
-
عند محاولة تدريب model ( نموذج ) يظهر لي الخطأ التالي Expected 2D array, got 1D array instead الكود: from sklearn.preprocessing import LabelEncoder import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # إنشاءداتا data = {'size': [100, 30, 50, 200, 2], 'class': ['big', 'small', 'medium', 'verybig', 'verysmall']} df = pd.DataFrame(data) le = LabelEncoder() le.fit(df['class']) df['class'] = le.transform(df['class']) X_train, X_test, y_train, y_test = train_test_split(df['size'], df['class'], random_state = 42, test_size = 0.33) linreg = LinearRegression() linreg.fit(X_train, y_train) linreg.score(x_test,y_test) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-9-f740a0daa981> in <module> 12 X_train, X_test, y_train, y_test = train_test_split(df['size'], df['class'], random_state = 42, test_size = 0.33) 13 linreg = LinearRegression() ---> 14 linreg.fit(X_train, y_train) 15 linreg.score(x_test,y_test) ~\anaconda3\lib\site-packages\sklearn\linear_model\_base.py in fit(self, X, y, sample_weight) 490 n_jobs_ = self.n_jobs 491 X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'], --> 492 y_numeric=True, multi_output=True) 493 494 if sample_weight is not None: ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator) 753 ensure_min_features=ensure_min_features, 754 warn_on_dtype=warn_on_dtype, --> 755 estimator=estimator) 756 if multi_output: 757 y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False, ~\anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 554 "Reshape your data either using array.reshape(-1, 1) if " 555 "your data has a single feature or array.reshape(1, -1) " --> 556 "if it contains a single sample.".format(array)) 557 558 # in the future np.flexible dtypes will be handled like object dtypes ValueError: Expected 2D array, got 1D array instead: array=[ 50 100 200].
-
كيفية تطبيق خوارزمية BernoulliNB لمهمة تصنيف في Sklearn؟
- 1 جواب
-
- 1
-
-
لدي الكود التالي: from sklearn.model_selection import cross_val_score from sklearn.datasets import load_iris from sklearn.preprocessing import OneHotEncoder from sklearn.tree import DecisionTreeClassifier dataset = load_iris() Xdata = pd.DataFrame(data=dataset.data, columns=dataset.feature_names) encoder = OneHotEncoder() ydata = encoder.fit_transform(pd.DataFrame(dataset.target)).toarray() model = DecisionTreeClassifier(max_depth=1) cross_val_score(model, Xdata, ydata, cv=4, scoring="roc_auc") --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-20-6be5be8289ab> in <module> 11 model = DecisionTreeClassifier(max_depth=1) 12 ---> 13 cross_val_score(model, Xdata, ydata, cv=4, scoring="roc_auc") ~\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score) 388 fit_params=fit_params, 389 pre_dispatch=pre_dispatch, --> 390 error_score=error_score) 391 return cv_results['test_score'] 392 ~\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score) 234 return_times=True, return_estimator=return_estimator, 235 error_score=error_score) --> 236 for train, test in cv.split(X, y, groups)) 237 238 zipped_scores = list(zip(*scores)) ~\anaconda3\lib\site-packages\joblib\parallel.py in __call__(self, iterable) 1002 # remaining jobs. 1003 self._iterating = False -> 1004 if self.dispatch_one_batch(iterator): 1005 self._iterating = self._original_iterator is not None 1006 ~\anaconda3\lib\site-packages\joblib\parallel.py in dispatch_one_batch(self, iterator) 833 return False 834 else: --> 835 self._dispatch(tasks) 836 return True 837 ~\anaconda3\lib\site-packages\joblib\parallel.py in _dispatch(self, batch) 752 with self._lock: 753 job_idx = len(self._jobs) --> 754 job = self._backend.apply_async(batch, callback=cb) 755 # A job can complete so quickly than its callback is 756 # called before we get here, causing self._jobs to ~\anaconda3\lib\site-packages\joblib\_parallel_backends.py in apply_async(self, func, callback) 207 def apply_async(self, func, callback=None): 208 """Schedule a func to be run""" --> 209 result = ImmediateResult(func) 210 if callback: 211 callback(result) ~\anaconda3\lib\site-packages\joblib\_parallel_backends.py in __init__(self, batch) 588 # Don't delay the application, to avoid keeping the input 589 # arguments in memory --> 590 self.results = batch() 591 592 def get(self): ~\anaconda3\lib\site-packages\joblib\parallel.py in __call__(self) 254 with parallel_backend(self._backend, n_jobs=self._n_jobs): 255 return [func(*args, **kwargs) --> 256 for func, args, kwargs in self.items] 257 258 def __len__(self): ~\anaconda3\lib\site-packages\joblib\parallel.py in <listcomp>(.0) 254 with parallel_backend(self._backend, n_jobs=self._n_jobs): 255 return [func(*args, **kwargs) --> 256 for func, args, kwargs in self.items] 257 258 def __len__(self): ~\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score) 542 else: 543 fit_time = time.time() - start_time --> 544 test_scores = _score(estimator, X_test, y_test, scorer) 545 score_time = time.time() - start_time - fit_time 546 if return_train_score: ~\anaconda3\lib\site-packages\sklearn\model_selection\_validation.py in _score(estimator, X_test, y_test, scorer) 589 scores = scorer(estimator, X_test) 590 else: --> 591 scores = scorer(estimator, X_test, y_test) 592 593 error_msg = ("scoring must return a number, got %s (%s) " ~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in __call__(self, estimator, *args, **kwargs) 85 if isinstance(scorer, _BaseScorer): 86 score = scorer._score(cached_call, estimator, ---> 87 *args, **kwargs) 88 else: 89 score = scorer(estimator, *args, **kwargs) ~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in _score(self, method_caller, clf, X, y, sample_weight) 330 **self._kwargs) 331 else: --> 332 return self._sign * self._score_func(y, y_pred, **self._kwargs) 333 334 def _factory_args(self): ~\anaconda3\lib\site-packages\sklearn\metrics\_ranking.py in roc_auc_score(y_true, y_score, average, sample_weight, max_fpr, multi_class, labels) 393 max_fpr=max_fpr), 394 y_true, y_score, average, --> 395 sample_weight=sample_weight) 396 397 ~\anaconda3\lib\site-packages\sklearn\metrics\_base.py in _average_binary_score(binary_metric, y_true, y_score, average, sample_weight) 118 y_score_c = y_score.take([c], axis=not_average_axis).ravel() 119 score[c] = binary_metric(y_true_c, y_score_c, --> 120 sample_weight=score_weight) 121 122 # Average the results ~\anaconda3\lib\site-packages\sklearn\metrics\_ranking.py in _binary_roc_auc_score(y_true, y_score, sample_weight, max_fpr) 219 """Binary roc auc score""" 220 if len(np.unique(y_true)) != 2: --> 221 raise ValueError("Only one class present in y_true. ROC AUC score " 222 "is not defined in that case.") 223 ValueError: Only one class present in y_true. ROC AUC score is not defined in that case.
-
كيفية تطبيق خوارزمية Multinomial Naive Bayes لمهمة تصنيف في Sklearn؟
-
كيفية تطبيق خوارزمية Gaussian Naive Bayesلمهمة تصنيف في Sklearn؟
-
قمت ببناء نموذج، لكن يظهر لي دوماً الخطأ التالي: #استيراد المكتبات import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split #تحميل البيانات data = load_breast_cancer().data labels = load_breast_cancer().target # تقسيم البيانات X_train, y_train,X_test, y_test = train_test_split(data, labels, test_size=0.2, random_state=2021, shuffle =True) c1 = LogisticRegression(multi_class='multinomial', random_state=1) c2 = RandomForestClassifier(n_estimators=50, random_state=1) c3 = GaussianNB() ec1 = VotingClassifier(estimators=[ ('lr', c1), ('rf', c2), ('gnb', c3)], voting='hard') ec1 = ec1.fit(X_train, y_train) print(ec1.score(X_test,y_test)) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-16-46caf1469fab> in <module> 17 18 ec1 = VotingClassifier(estimators=[ ('lr', c1), ('rf', c2), ('gnb', c3)], voting='hard') ---> 19 ec1 = ec1.fit(X_train, y_train) 20 print(ec1.score(X_test,y_test))#0.9385964912280702 ~\anaconda3\lib\site-packages\sklearn\ensemble\_voting.py in fit(self, X, y, sample_weight) 207 208 """ --> 209 check_classification_targets(y) 210 if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1: 211 raise NotImplementedError('Multilabel and multi-output' ~\anaconda3\lib\site-packages\sklearn\utils\multiclass.py in check_classification_targets(y) 167 if y_type not in ['binary', 'multiclass', 'multiclass-multioutput', 168 'multilabel-indicator', 'multilabel-sequences']: --> 169 raise ValueError("Unknown label type: %r" % y_type) 170 171 ValueError: Unknown label type: 'continuous-multioutput'