
Meezo ML
الأعضاء-
المساهمات
197 -
تاريخ الانضمام
-
تاريخ آخر زيارة
نوع المحتوى
ريادة الأعمال
البرمجة
التصميم
DevOps
التسويق والمبيعات
العمل الحر
البرامج والتطبيقات
آخر التحديثات
قصص نجاح
أسئلة وأجوبة
كتب
دورات
كل منشورات العضو Meezo ML
-
ظهور الخطأ التالي عندما أحاول استخدام fit_generator مع نموذجي: print(x_train.shape) # (15000, 100, 100, 3) print(x_test.shape) # (8708, 100, 100, 3) print(y_train.shape) # (15000, 119) print(y_test.shape) # (8708, 119) im=ImageDataGenerator() data=im.flow(x_train, y_train, 16) # النموذج from keras.preprocessing.image import ImageDataGenerator from keras.layers import AveragePooling2D, MaxPooling2D, Flatten, Conv2D, ZeroPadding2D,Input, Dense, Activation from keras import layers from keras.models import Model x_input = Input((100,100,3)) x = Conv2D(128, (5,5))(x_input) x = Activation('tanh')(x) x = MaxPooling2D((3, 3))(x) x = Conv2D(32, (5,5))(x) x = Activation('tanh')(x) x = MaxPooling2D((3, 3))(x) x = Conv2D(100, (3,3))(x) x = Activation('tanh')(x) x = MaxPooling2D((3, 3))(x) x = Flatten()(x) x = Dense(256, activation='tanh')(x) x = Dense(100, activation='tanh')(x) x = Dense(100, activation='tanh')(x) output1 = Dense(117, activation='softmax')(x) output2 = Dense(2, activation='softmax')(x) model = Model(inputs=x_input, outputs=[output1, output2]) model.compile(optimizer='rmsprop', metrics=['acc'],loss=['categorical_crossentropy']) model.fit_generator(data, steps_per_epoch=len(x_train) / 16, epochs=5, validation_data=(x_test, y_test)) ------------------------------------------------------------------------------------------------------- ValueError: Error when checking model target: the list of Numpy arrays that you are passing to your model is not the size the model expected.
-
قمت بتحميل مجموعة بيانات imdb (مجموعة بيانات لمراجعات الأفلام على الموقع الشهير imdb)لكن البيانات النصية تكون مختلفة الأطوال كما نعلم (مثلاً إحدى المراجعات طولها 100 كلمة و أخرى طولها 20 وهكذا)، كيف يمكننا استخدام التابع pad_sequences لتوحيد أطوالها وتحويلها إلى مصفوفة؟ لأنني أريد تغذية الشبكةالعصبية التالية بها: model = Sequential() model.add(Embedding(10000, 8, input_length=maxlen)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) model.summary() history = model.fit(x_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
-
ماسبب ظهور الخطأ 'TypeError: __init__() got an unexpected keyword argument 'ragged في الكودالتالي: path = "E:/keras_model.h5" from keras.models import load_model model = load_model(path) from imutils.video import VideoStream strem = VideoStream(usePiCamera=True) from keras.preprocessing.image import img_to_array import cv2 as cv import imutils import numpy while 1: f = strem.Read() f = imutils.resize(f, width=600) im = cv.resize(f, (32, 32)) im = im.astype("float32") / 255.0 im = img_to_array(im) im = numpy.expand_dims(im, axis=0) (x, rb, whiteBall, none) = model.predict(image)[0] l = "none" p = none if x > none and x > rb and x > wb: l = "Fuel" p = x elif rb > none and rb > fuel and rb > wb: l = "Red Ball" p = rb elif wb > none and wb > rb and wb > x: l = "white ball" p = wb else: l = "none" p = none f = cv.putText(f, "{}:{:.2f%}".format(l, p * 100), (10, 25),cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2) cv.imshow("Frame", f) key = cv.waitKey(1) & 0xFF if key == ord("q"): break ----------------------------------------------------------------------------------------------------------------------- Traceback (most recent call last): File "/home/pi/Documents/converted_keras/keras-script.py", line 3, in <module> model = load_model(MODEL_PATH) File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 492, in load_wrapper return load_function(*args, **kwargs) File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 584, in load_model model = _deserialize_model(h5dict, custom_objects, compile) File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 274, in _deserialize_model model = model_from_config(model_config, custom_objects=custom_objects) File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 627, in model_from_config return deserialize(config, custom_objects=custom_objects) File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object list(custom_objects.items()))) File "/usr/local/lib/python3.7/dist-packages/keras/engine/sequential.py", line 301, in from_config custom_objects=custom_objects) File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object list(custom_objects.items()))) File "/usr/local/lib/python3.7/dist-packages/keras/engine/sequential.py", line 301, in from_config custom_objects=custom_objects) File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object list(custom_objects.items()))) File "/usr/local/lib/python3.7/dist-packages/keras/engine/network.py", line 1056, in from_config process_layer(layer_data) File "/usr/local/lib/python3.7/dist-packages/keras/engine/network.py", line 1042, in process_layer custom_objects=custom_objects) File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize printable_module_name='layer') File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 149, in deserialize_keras_object return cls.from_config(config['config']) File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1179, in from_config return cls(**config) File "/usr/local/lib/python3.7/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper return func(*args, **kwargs) TypeError: __init__() got an unexpected keyword argument 'ragged'
-
قمت ببناء نموذج في كيراس، لكن الدقة دوماً تساوي 0 وقيمة الخطأ كبيرة جداً، ما السبب؟ from keras.datasets import boston_housing (train_data, train_targets), (test_data, test_targets) =boston_housing.load_data() mean = train_data.mean(axis=0) train_data -= mean std = train_data.std(axis=0) train_data /= std test_data -= mean test_data /= std from keras import models from keras import layers model = models.Sequential() model.add(layers.Dense(64, activation='relu', input_shape=(train_data.shape[1],))) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(1)) model.compile(optimizer='rmsprop', loss='mse', metrics=['acc']) history = model.fit(train_data, train_targets,epochs=14, batch_size=64, verbose=1) -------------------------------------------------------------------------------------- Epoch 1/14 7/7 [==============================] - 1s 4ms/step - loss: 540.0954 - acc: 0.0000e+00 Epoch 2/14 7/7 [==============================] - 0s 5ms/step - loss: 516.8516 - acc: 0.0000e+00 Epoch 3/14 7/7 [==============================] - 0s 4ms/step - loss: 463.7306 - acc: 0.0000e+00 Epoch 4/14 7/7 [==============================] - 0s 3ms/step - loss: 413.9145 - acc: 0.0000e+00 Epoch 5/14 7/7 [==============================] - 0s 2ms/step - loss: 374.7838 - acc: 0.0000e+00 Epoch 6/14 7/7 [==============================] - 0s 2ms/step - loss: 326.2928 - acc: 0.0000e+00 Epoch 7/14 7/7 [==============================] - 0s 3ms/step - loss: 284.4119 - acc: 0.0000e+00 Epoch 8/14 7/7 [==============================] - 0s 2ms/step - loss: 213.6348 - acc: 0.0000e+00 Epoch 9/14 7/7 [==============================] - 0s 3ms/step - loss: 161.0196 - acc: 0.0000e+00 Epoch 10/14 7/7 [==============================] - 0s 2ms/step - loss: 123.5639 - acc: 0.0000e+00 Epoch 11/14 7/7 [==============================] - 0s 3ms/step - loss: 102.8886 - acc: 0.0000e+00 Epoch 12/14 7/7 [==============================] - 0s 3ms/step - loss: 76.3049 - acc: 0.0000e+00 Epoch 13/14 7/7 [==============================] - 0s 3ms/step - loss: 65.1841 - acc: 0.0000e+00 Epoch 14/14 7/7 [==============================] - 0s 3ms/step - loss: 44.9363 - acc: 0.0000e+00
-
قمت ببناء نموذج تصنيف صور واستخدمت الصف Model في بناء النموذج ظهور الخطأ التالي AttributeError: 'Model' object has no attribute 'predict_classes: m = Sequential() m.add(Flatten(input_shape=base_model.output_shape[1:])) m.add(Dense(256, activation='tanh')) m.add(Dense(3, activation='softmax')) m.load_weights(top_model_weights_path) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) for layer in model.layers[:15]: layer.trainable = False model.summary() model.compile(loss='binary_crossentropy', optimizer=SGD(lr=1e-4, momentum=0.99), metrics=['accuracy']) model.fit_generator(train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size, verbose=1) model.save_weights(top_model_weights_path) bottleneck_features_validation = model.predict_generator(validation_generator, nb_validation_samples // batch_size) np.save(open('bottleneck_features_validation','wb'), bottleneck_features_validation) validation_data = np.load(open('bottleneck_features_validation', 'rb')) pred = model.predict_classes(validation_data)
-
كما قالت في الأعلى هناك مشكلة في اسم المجلد، قم بتغيير الاسم بحيث لايتضمن أحرف خاصة مثل /. أي اجعل اسم المجلد فقط أحرف إنجليزية.
- 3 اجابة
-
- 1
-
-
الشبكات العصبية المتكررة GRUs(Gated recurrent units) والفرق بينها وبين الشبكة LSTM وكيفية استخدامها في Keras؟
-
أثناء محاولة استخدام Sequential في Keras يظهر لي الخطأ التالي: from keras.datasets import imdb from keras.preprocessing import sequence from keras import layers from keras.models import Sequential max_features = 10000 maxlen = 500 (x_train, y_train), (x_test, y_test) = imdb.load_data( num_words=max_features) x_train = [x[::-1] for x in x_train] x_test = [x[::-1] for x in x_test] x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) model = Sequential() model.add(layers.Embedding(max_features, 100)) model.add(layers.Bidirectional(layers.LSTM(64))) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['acc']) history = model.fit(x_train, y_train, epochs=8, batch_size=64, validation_split=0.2) -------------------------------------------------------------------------------------------------------------------- File "/anaconda/lib/python2.7/site-packages/keras/__init__.py", line 4, in <module> from . import applications File "/anaconda/lib/python2.7/site-packages/keras/applications/__init__.py", line 1, in <module> from .vgg16 import VGG16 File "/anaconda/lib/python2.7/site-packages/keras/applications/vgg16.py", line 14, in <module> from ..models import Model File "/anaconda/lib/python2.7/site-packages/keras/models.py", line 14, in <module> from . import layers as layer_module File "/anaconda/lib/python2.7/site-packages/keras/layers/__init__.py", line 4, in <module> from ..engine import Layer File "/anaconda/lib/python2.7/site-packages/keras/engine/__init__.py", line 8, in <module> from .training import Model File "/anaconda/lib/python2.7/site-packages/keras/engine/training.py", line 24, in <module> from .. import callbacks as cbks File "/anaconda/lib/python2.7/site-packages/keras/callbacks.py", line 25, in <module> from tensorflow.contrib.tensorboard.plugins import projector File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/__init__.py", line 30, in <module> from tensorflow.contrib import factorization File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/factorization/__init__.py", line 24, in <module> from tensorflow.contrib.factorization.python.ops.gmm import * File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/factorization/python/ops/gmm.py", line 27, in <module> from tensorflow.contrib.learn.python.learn.estimators import estimator File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/__init__.py", line 87, in <module> from tensorflow.contrib.learn.python.learn import * File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/__init__.py", line 23, in <module> from tensorflow.contrib.learn.python.learn import * File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/__init__.py", line 25, in <module> from tensorflow.contrib.learn.python.learn import estimators File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/__init__.py", line 297, in <module> from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn.py", line 29, in <module> from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py", line 31, in <module> from tensorflow.contrib.learn.python.learn.estimators import estimator File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 49, in <module> from tensorflow.contrib.learn.python.learn.learn_io import data_feeder File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/learn_io/__init__.py", line 21, in <module> from tensorflow.contrib.learn.python.learn.learn_io.dask_io import extract_dask_data File "/anaconda/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/learn_io/dask_io.py", line 26, in <module> import dask.dataframe as dd File "/anaconda/lib/python2.7/site-packages/dask/dataframe/__init__.py", line 3, in <module> from .core import (DataFrame, Series, Index, _Frame, map_partitions, File "/anaconda/lib/python2.7/site-packages/dask/dataframe/core.py", line 38, in <module> pd.computation.expressions.set_use_numexpr(False) AttributeError: 'module' object has no attribute 'computation'
-
قمت ببناء نموذج واستخدمت المحسن SGD لكن يظهر لي الخطأ التالي: from tensorflow.python.keras.layers import Dense,Embedding,LSTM from tensorflow.python.keras.models import Sequential from keras.optimizers import SGD model =Sequential() model.add(Embedding(max_features, 64)) model.add(LSTM(16)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer=SGD(lr=0.01), loss='binary_crossentropy', metrics=['acc']) history = model.fit(input_train, y_train, epochs=2, batch_size=64, validation_split=0.2) --------------------------------------------------------------------------------------------------- ValueError: ('Could not interpret optimizer identifier:', )
-
ظهر لدي الخطأ التالي أثناء محاولة تدريب نموذج RNN مالسبب: File "C:\python36-64\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 734, in fit use_multiprocessing=use_multiprocessing) File "C:\python36-64\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 224, in fit distribution_strategy=strategy) File "C:\python36-64\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 497, in _process_training_inputs adapter_cls = data_adapter.select_data_adapter(x, y) File "C:\python36-64\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 628, in select_data_adapter _type_name(x), _type_name(y))) ValueError: Failed to find data adapter that can handle input: <class 'numpy.ndarray'>, (<class 'list'> containing values of types {"<class 'numpy.float64'>"})
-
كيف نقوم بتطبيع البيانات باستخدام الصف Normalizer في Sklearn؟ وما هو مبدأ عمله وما الفرق بينه وبين البقية في Sklearn؟
-
أريد توضيح لطبقة LSTM وكيفية استخدامها في كيراس وتنسرفلو؟
-
كيفية استخدام المصنف DummyClassifier في Sklearn؟
-
طبقة (Recurrent Neural Network) SimpleRNN في Keras و TensorFlow؟
-
أقوم ببناء نموذج لكن تظهر لي هذه المشكلة باستمرار، ما الحل؟ from tensorflow.keras.models import Sequential from tensorflow.keras.initializers import Constant from tensorflow.python.keras import backend as k from tensorflow. keras.layers import Flatten, Dropout, Dense,LSTM from keras.layers.embeddings import Embedding # تعريف النموذج model = Sequential() model.add(Embedding(1000, 128, input_length=512)) model.add(Flatten()) model.add(Dense(4, activation='softmax')) --------------------------------------------------------------------------------------------- AttributeError: module 'tensorflow' has no attribute 'get_default_graph'
-
كيف يمكنني معرفة عدد المعاملات parameters في النموذج في Keras؟
- 3 اجابة
-
- 1
-
-
ظهور الخطأ التالي في Keras أثناء بناء نموذج لتصنيف الصور باستخدام الطبقات التلاففية ValueError: Input 0 is incompatible with layer conv2d_1: expected ndim=4, found ndim=5 علماً أن بيانات التدريب لدي لها الأبعاد التالية: (26721, 32, 32, 1) model = Sequential() model.add(Conv2D(32, (3, 3), padding="same", activation="relu", input_shape=(26721, 32, 32, 1) )) ما الخطأ؟
-
أقرأ في كورس عن التعلم العميق و استخدام مكتبة كيراس وأحاول تطبيق التعليمات في بيئة أناكوندا على جوبيتر لكن يظهر لي الخطأ التالي: raise ImportError('Could not import PIL.Image. ' ImportError: Could not import PIL.Image. The use of array_to_img requires PIL رغم أنني قمت بتحميل مكتبة pip install Pillow لكن لم ينجح الأمر.
-
ماهي الطبقة Dense layer فيKeras وكيف نقوم ياستخدامها؟
-
ماهي طبقة التضمين Embedding في Keras وكيف نقوم باستخدامها؟