اذهب إلى المحتوى

السؤال

نشر

السلام عليكم 

هو الهدف من المسابقه هو ده  ستقوم بتطوير نماذج لتحسين التنبؤ بمعدلات البقاء على قيد الحياة بعد عملية زرع الأعضاء 

efs (Event-Free Survival):

يشير إلى البقاء على قيد الحياة بدون أحداث.

efs_time (Event-Free Survival Time):

هذا يشير إلى المدة الزمنية التي عاشها المريض دون حدوث أي أحداث سلبية. 

فا انا استخدم عمود اي ؟

Recommended Posts

  • 0
نشر

إذا كنت تريد التنبؤ بمعدلات البقاء على قيد الحياة فقط استخدم العمود efs ، حيث أن هذا العمود يمثل ما إذا كان المريض قد نجا بدون أحداث و في هذه الحالة سيكون النموذج تصنيف، أما إذا كنت تريد التنبؤ بمدة البقاء على قيد الحياة بدون أحداث، استخدم العمود efs_time، حيث أن هذا العمود يمثل عدد الأيام أو الشهور التي عاشها المريض بدون أحداث سلبيةو في هذه الحالة تستخدم الانحدار.

أما إذا كنت تريد الجمع بين الاثنين أي التنبؤ بكل من البقاء والمدة يمكنك في هذه الحالة بناء نموذج متعدد الأهداف للتنبؤ بـ efs و efs_time  معا، حيث يعمل النموذج على المهمتين في وقت واحد، و هذه الطريقة أكثر تعقيدا ولكنها مفيدة إذا كنت تعتقد أن التنبؤ بقيمة واحدة يمكن أن يساعد في تحسين دقة التنبؤ بالقيمة الأخرى.

  • 0
نشر
بتاريخ 39 دقائق مضت قال Chihab Hedidi:

أما إذا كنت تريد الجمع بين الاثنين أي التنبؤ بكل من البقاء والمدة يمكنك في هذه الحالة بناء نموذج متعدد الأهداف للتنبؤ بـ efs و efs_time  معا، حيث يعمل النموذج على المهمتين في وقت واحد، و هذه الطريقة أكثر تعقيدا ولكنها مفيدة إذا كنت تعتقد أن التنبؤ بقيمة واحدة يمكن أن يساعد في تحسين دقة التنبؤ بالقيمة الأخرى.

ايوه هو ده المطلوب 

الف شكراا لحضرتك جدا 

انضم إلى النقاش

يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.

زائر
أجب على هذا السؤال...

×   لقد أضفت محتوى بخط أو تنسيق مختلف.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   جرى استعادة المحتوى السابق..   امسح المحرر

×   You cannot paste images directly. Upload or insert images from URL.

  • إعلانات

  • تابعنا على



×
×
  • أضف...