Meezo ML نشر 22 يونيو 2021 أرسل تقرير نشر 22 يونيو 2021 كيف نقوم بتطبيق cross_val_score باستخدام مكتبة Sklearn لقياس كفاءة نماذج مختلفة عبر عدة Folds؟ اقتباس
1 Ali Haidar Ahmad نشر 22 يونيو 2021 أرسل تقرير نشر 22 يونيو 2021 نستخدم هذه الأداة لقياس ال score لنموذج أو عدة نماذج في كل Folds. يمكنك استخدامها عبر الموديول: sklearn.model_selection.cross_val_score الصيغة المبسطة: sklearn.model_selection.cross_val_score(estimator, X, y, cv=None) الوسيط cv لتحديد عدد ال Folds التي نريد تطبيقها. ال estimator هو الخوارزمية المطلوب تطبيقها. مثال للتوضيح (استخدام مودل واحد): from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestRegressor # تحميل الداتا BostonData = load_boston() data = BostonData.data labels = BostonData.target # تقسيم البيانات X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, shuffle =True, random_state=2021) CVTrain = cross_val_score(RandomForestRegressor(), X_train, y_train, cv=5) CVTest = cross_val_score(RandomForestRegressor(), X_test, y_test, cv=5) # عرض النتائج print('Cross Validate Score for Training Set: ', CVTrain) print('Cross Validate Score for Testing Set: ', CVTest) # Cross Validate Score for Training Set: [0.88749657 0.885243 0.90868134 0.89021845 0.81435844] # Cross Validate Score for Testing Set: [0.68090613 0.84052288 0.7597606 0.49063984 0.66992151] استخدام عدة نماذج: from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.model_selection import cross_val_score # تحميل الداتا BostonData = load_boston() data = BostonData.data labels = BostonData.target # تعريف النماذج التي سنطبقها model1 = SVR() model2 = DecisionTreeRegressor() model3 = RandomForestRegressor() model = [model1 , model2 , model3] j=1 for m in model: print('result of model number : ' , j ,' for cv value ',n,' is ' , cross_val_score(m, X, y, cv=3)) print('-------------------------------------------------------------------------------------------') j+=1 #result of model number : 1 for cv value 10 is [0.51272653 0.75456596 0.69387067] #------------------------------------------------------------------------------------------- #result of model number : 2 for cv value 10 is [0.41026494 0.64218456 0.54842306] #------------------------------------------------------------------------------------------- #result of model number : 3 for cv value 10 is [0.65818535 0.8420133 0.80363026] #------------------------------------------------------------------------------------------- 1 اقتباس
السؤال
Meezo ML
كيف نقوم بتطبيق cross_val_score باستخدام مكتبة Sklearn لقياس كفاءة نماذج مختلفة عبر عدة Folds؟
1 جواب على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.