اذهب إلى المحتوى

السؤال

Recommended Posts

  • 1
نشر (معدل)

يمكنك استخدامها عبر الموديول:

ensemble.RandomForestClassifier 

الصيغة العامة:

sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features='auto', max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, ccp_alpha=0.0)

n_estimators : عدد أشجار القرار المستخدمة.  default=100
criterion: الأسلوب الرياضي للمعالجة وتكون {“gini”, “entropy”}, 'default='gini
max_depth   :  عمق الأشجار.
min_samples_split:الحد الأدنى لعدد العينات المطلوبة لتقسيم عقدة داخلية. int , default=2.
min_samples_leaf:  الحد الأدنى لعدد العينات المطلوبة في العقدة التي تمثل الاوراق.  default=1.
max_features:العدد المناسب من الفيتشرز التي يتم احتسابها {“auto”, “sqrt”, “log2”}.
في حال auto:
max_features=sqrt(n_features).
sqrt:
ax_features=sqrt(n_features).
log2:
max_features=log2(n_features).
None:
max_features=n_features.
إذا وضعت قيمة float:
max_features=int(max_features * n_features)
قيمة int:
سيتم أخذ ال features  عند كل تقسيمة ك max_features.
bootstrap: لتحديد فيما إذا كان سيتم استخدام عينات ال bootstrap عند بناء الأشجار. في حال ضبطها على true سيتم استخدام كامل البيانات لبناء كل شجرة. افتراضياً تكون False.
oob_score: لتحديد فيما إذا كان سيتم استخدام عينات out-of-bag لتقدير قيمة التعميم "generalization score". ويجب أن تكون bootstrap مضبوطة على True لاستخدامها.
n_jobs: عدد المهام التي يتم تنفيذها بالتوازي. -1 للتنفيذ بأقصى سرعة ممكنة.
random_state: يتحكم بعملية التقسيم افتراضياً يكون None.
verbose: لعرض التفاصيل التي تحدث في التدريب. افاراضياً 0 أي لايظهر شيء، أما وضع أي قيمة أكبر من الصفر سيعرض التفاصيل int.
ccp_alpha: معامل تعقيد  يستخدم لتقليل التكلفة الزمانية والمكانية. non-negative float, default=0.0
التوابع:
fit(data): للقيام بعملية التدريب.
predict(data): لتوقع القيم.
score(data):  لتقييم كفاءة النموذج.
()get_params :لايجاد مقدار الدقة
predict_proba(data) : لعمل التوقع أيضاً لكن هنا سيخرج الفيمة الاحتمالية(أي لن يتم القصر على  عتبة)
apply(data):  ياتي لك بقيمة الورقة المحسوبة.
()get_n_leaves: يرد عدد الأوراق.
()get_depth: يرد عمق الشجرة.
ال attributtes:
classes_: لعرض ال labels التي وجدها.
n_outputs_: عدد المرخرجات الناتجة عن عملية ال fitting.
estimators_: عرض معلومات عن كل الأشجار التي تم تشكيلها.
base_estimator_:عرض معلومات الشجرة الأساسية
feature_importances_: عرض أهم الفيتشرز المؤثرة في التوقع.
n_features_: عدد الفيتشرز.
مثال:

# استيراد المكتبات
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt

#تحميل البيانات
data = load_breast_cancer().data
labels = load_breast_cancer().target

# تقسيم البيانات
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=2021, shuffle =True)
# RandomForestClassifier تطبيق 
RandomForestC = RandomForestClassifier(criterion = 'gini',n_estimators=100,max_depth=2,random_state=33) #criterion can be also : entropy 
RandomForestC.fit(X_train, y_train)

print('Train Score is : ' , RandomForestC.score(X_train, y_train)) # 0.9538461538461539
print('Test Score is : ' , RandomForestC.score(X_test, y_test)) # Test Score is :  0.9298245614035088
#print('No. of classes are : ' , RandomForestC.n_classes_) # No. of features are :  2
#print('No. of features are : ' RandomForestC.n_features_) # No. of features are : 30
#print('No. of n_outputs are : ' , RandomForestC.n_outputs_) # No. of n_outputs are :  
# عرض معلومات عن كل الأشجار التي تم تشكيلها
#print(RandomForestC.estimators_)
# عرض معلومات الشجرة الأساسية
#print( RandomForestC.base_estimator_)
# عرض أهم الفيتشرز
#print( RandomForestC.feature_importances_)

 

تم التعديل في بواسطة Ali Haidar Ahmad

انضم إلى النقاش

يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.

زائر
أجب على هذا السؤال...

×   لقد أضفت محتوى بخط أو تنسيق مختلف.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   جرى استعادة المحتوى السابق..   امسح المحرر

×   You cannot paste images directly. Upload or insert images from URL.

  • إعلانات

  • تابعنا على



×
×
  • أضف...