Meezo ML نشر 13 يونيو 2021 أرسل تقرير نشر 13 يونيو 2021 كيفي نقوم بتطبيق خوارزمية Random Forest لمهمة تصنيف Classification في مكتبة Sklearn؟ اقتباس
1 Ali Haidar Ahmad نشر 13 يونيو 2021 أرسل تقرير نشر 13 يونيو 2021 (معدل) يمكنك استخدامها عبر الموديول: ensemble.RandomForestClassifier الصيغة العامة: sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, max_features='auto', max_leaf_nodes=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, ccp_alpha=0.0) n_estimators : عدد أشجار القرار المستخدمة. default=100 criterion: الأسلوب الرياضي للمعالجة وتكون {“gini”, “entropy”}, 'default='gini max_depth : عمق الأشجار. min_samples_split:الحد الأدنى لعدد العينات المطلوبة لتقسيم عقدة داخلية. int , default=2. min_samples_leaf: الحد الأدنى لعدد العينات المطلوبة في العقدة التي تمثل الاوراق. default=1. max_features:العدد المناسب من الفيتشرز التي يتم احتسابها {“auto”, “sqrt”, “log2”}. في حال auto: max_features=sqrt(n_features). sqrt: ax_features=sqrt(n_features). log2: max_features=log2(n_features). None: max_features=n_features. إذا وضعت قيمة float: max_features=int(max_features * n_features) قيمة int: سيتم أخذ ال features عند كل تقسيمة ك max_features. bootstrap: لتحديد فيما إذا كان سيتم استخدام عينات ال bootstrap عند بناء الأشجار. في حال ضبطها على true سيتم استخدام كامل البيانات لبناء كل شجرة. افتراضياً تكون False. oob_score: لتحديد فيما إذا كان سيتم استخدام عينات out-of-bag لتقدير قيمة التعميم "generalization score". ويجب أن تكون bootstrap مضبوطة على True لاستخدامها. n_jobs: عدد المهام التي يتم تنفيذها بالتوازي. -1 للتنفيذ بأقصى سرعة ممكنة. random_state: يتحكم بعملية التقسيم افتراضياً يكون None. verbose: لعرض التفاصيل التي تحدث في التدريب. افاراضياً 0 أي لايظهر شيء، أما وضع أي قيمة أكبر من الصفر سيعرض التفاصيل int. ccp_alpha: معامل تعقيد يستخدم لتقليل التكلفة الزمانية والمكانية. non-negative float, default=0.0 التوابع: fit(data): للقيام بعملية التدريب. predict(data): لتوقع القيم. score(data): لتقييم كفاءة النموذج. ()get_params :لايجاد مقدار الدقة predict_proba(data) : لعمل التوقع أيضاً لكن هنا سيخرج الفيمة الاحتمالية(أي لن يتم القصر على عتبة) apply(data): ياتي لك بقيمة الورقة المحسوبة. ()get_n_leaves: يرد عدد الأوراق. ()get_depth: يرد عمق الشجرة. ال attributtes: classes_: لعرض ال labels التي وجدها. n_outputs_: عدد المرخرجات الناتجة عن عملية ال fitting. estimators_: عرض معلومات عن كل الأشجار التي تم تشكيلها. base_estimator_:عرض معلومات الشجرة الأساسية feature_importances_: عرض أهم الفيتشرز المؤثرة في التوقع. n_features_: عدد الفيتشرز. مثال: # استيراد المكتبات from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt #تحميل البيانات data = load_breast_cancer().data labels = load_breast_cancer().target # تقسيم البيانات X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=2021, shuffle =True) # RandomForestClassifier تطبيق RandomForestC = RandomForestClassifier(criterion = 'gini',n_estimators=100,max_depth=2,random_state=33) #criterion can be also : entropy RandomForestC.fit(X_train, y_train) print('Train Score is : ' , RandomForestC.score(X_train, y_train)) # 0.9538461538461539 print('Test Score is : ' , RandomForestC.score(X_test, y_test)) # Test Score is : 0.9298245614035088 #print('No. of classes are : ' , RandomForestC.n_classes_) # No. of features are : 2 #print('No. of features are : ' RandomForestC.n_features_) # No. of features are : 30 #print('No. of n_outputs are : ' , RandomForestC.n_outputs_) # No. of n_outputs are : # عرض معلومات عن كل الأشجار التي تم تشكيلها #print(RandomForestC.estimators_) # عرض معلومات الشجرة الأساسية #print( RandomForestC.base_estimator_) # عرض أهم الفيتشرز #print( RandomForestC.feature_importances_) تم التعديل في 13 يونيو 2021 بواسطة Ali Haidar Ahmad 1 اقتباس
السؤال
Meezo ML
كيفي نقوم بتطبيق خوارزمية Random Forest لمهمة تصنيف Classification في مكتبة Sklearn؟
1 جواب على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.