Meezo ML نشر 12 يونيو 2021 أرسل تقرير نشر 12 يونيو 2021 كيف نقوم بتطبيق Random Forest لمهمة توقع Regression في Sklearn؟ اقتباس
1 Ali Haidar Ahmad نشر 12 يونيو 2021 أرسل تقرير نشر 12 يونيو 2021 (معدل) يمكنك استخدامها عبر الموديول ensemble.RandomForestRegressor الصيغة العامة: sklearn.ensemble.RandomForestRegressor(n_estimators=100, criterion='mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto', bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0 ccp_alpha=0.0, max_samples=None) n_estimators : عدد أشجار القرار المستخدمة. max_depth : عمق الأشجار. min_samples_split: الحد الادني من التقسيمات المسموح بها. n_jobs: عدد المهام التي يتم تنفيذها بالتوازي. -1 للتنفيذ بأقصى سرعة ممكنة. random_state: يتحكم بعملية التقسيم افتراضياً يكون None. ccp_alpha: معامل تعقيد يستخدم لتقليل التكلفة الزمانية والمكانية. non-negative float, default=0.0 criterion: الأسلوب الرياضي للمعالجة وتكون {“mse”, “friedman_mse”, “mae”, “poisson”}, "default=”mse min_samples_split:الحد الأدنى لعدد العينات المطلوبة لتقسيم عقدة داخلية. int , default=2. min_samples_leaf: الحد الأدنى لعدد العينات المطلوبة في العقدة التي تمثل الاوراق. default=1. verbose: لعرض التفاصيل التي تحدث في التدريب. افاراضياً 0 أي لايظهر شيء، أما وضع أي قيمة أكبر من الصفر سيعرض التفاصيل int. bootstrap: لتحديد فيما إذا كان سيتم استخدام عينات ال bootstrap عند بناء الأشجار. في حال ضبطها على true سيتم استخدام كامل البيانات لبناء كل شجرة. افتراضياً تكون False. oob_score: لتحديد فيما إذا كان سيتم استخدام عينات out-of-bag لتقدير قيمة التعميم "generalization score". ويجب أن تكون bootstrap مضبوطة على True لاستخدامها. max_features:العدد المناسب من الفيتشرز التي يتم احتسابها {“auto”, “sqrt”, “log2”}. في حال auto: max_features=sqrt(n_features). sqrt: ax_features=sqrt(n_features). log2: max_features=log2(n_features). None: max_features=n_features. إذا وضعت قيمة float: max_features=int(max_features * n_features) قيمة int: سيتم أخذ ال features عند كل تقسيمة ك max_features. التوابع: fit(data): للقيام بعملية التدريب. predict(data): لتوقع القيم. score(data): لتقييم كفاءة النموذج. ()get_params :لايجاد مقدار الدقة predict_proba(data) : لعمل التوقع أيضاً لكن هنا سيخرج الفيمة الاحتمالية(أي لن يتم القصر على عتبة) apply(data): ياتي لك بقيمة الورقة المحسوبة. ()get_n_leaves: يرد عدد الأوراق. ()get_depth: يرد عمق الشجرة. ال attributtes: classes_: لعرض ال labels التي وجدها. feature_importances_: عرض أهم الفيتشرز المؤثرة في التوقع. مثال: from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor # تحميل الداتا BostonData = load_boston() data = BostonData.data labels = BostonData.target # تقسيم البيانات X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, shuffle =True, random_state=2021) # DecisionTreeRegressor تطبيق RandomForestR = RandomForestRegressor(n_estimators=100, random_state=44) RandomForestR.fit(X_train, y_train) #Calculating Details print('Train Score is : ' , RandomForestR.score(X_train, y_train)) print('Test Score is : ' , RandomForestR.score(X_test, y_test)) # 0.7831947504479144 print('No. of features are : ' , RandomForestR.n_features_) تم التعديل في 12 يونيو 2021 بواسطة Ali Haidar Ahmad 1 اقتباس
السؤال
Meezo ML
كيف نقوم بتطبيق Random Forest لمهمة توقع Regression في Sklearn؟
1 جواب على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.