Meezo ML نشر 12 يونيو 2021 أرسل تقرير نشر 12 يونيو 2021 كيف أطبق Decision Tree لمهمة تصنيف Classification باستخدام مكتبة Sklearn ؟ اقتباس
1 Ali Haidar Ahmad نشر 12 يونيو 2021 أرسل تقرير نشر 12 يونيو 2021 يمكنك القيام بذلك عن طريق الموديول tree أن تستدعي الكلاس DecisionTreeClassifier: tree.DecisionTreeClassifier الصيغة العامة: sklearn.tree.DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, ccp_alpha=0.0 الوسطاء: splitter: الاستراتيجية المستخدمة لاختيار الانقسام عند كل عقدة. {“best”, “random”}, "default=”best random ليكون التقسيم عشوائي و best لاختيار أفضل تقسيم. min_samples_split:الحد الأدنى لعدد العينات المطلوبة لتقسيم عقدة داخلية. int , default=2. min_samples_leaf: الحد الأدنى لعدد العينات المطلوبة في العقدة التي تمثل الاوراق. default=1 n_jobs: عدد المهام التي يتم تنفيذها بالتوازي نضع -1 للتنفيذ على ال GPU. max_depth: عمق شجرة القرار. default=None min_samples_split:الحد الادني من التقسيمات المسموح بها tol: (مقدار السماحية) عدد يمثل نقطة إيقاف التعلم بحال تجاوز هذه القيمه فيتوقف ال optimizer . max_features:العدد المناسب من الفيتشرز التي يتم احتسابها {“auto”, “sqrt”, “log2”}. في حال auto: max_features=sqrt(n_features). sqrt: ax_features=sqrt(n_features). log2: max_features=log2(n_features). None: max_features=n_features. إذا وضعت قيمة float: max_features=int(max_features * n_features) قيمة int: سيتم أخذ ال features عند كل تقسيمة ك max_features. random_state: يتحكم بعملية التقسيم افتراضياً يكون None. ccp_alpha: معامل تعقيد يستخدم لتقليل التكلفة الزمانية والمكانية. non-negative float, default=0.0 criterion: الأسلوب الرياضي للمعالجة وتكون gini , entropy min_impurity_split: عتبة التوقف المبكر لنمو الشجرة.float, default=0 التوابع: fit(data): للقيام بعملية التدريب. predict(data): لتوقع القيم. score(data): لتقييم كفاءة النموذج. ()get_params :لايجاد مقدار الدقة predict_proba(data) : لعمل التوقع أيضاً لكن هنا سيخرج الفيمة الاحتمالية(أي لن يتم القصر على عتبة) apply(data): ياتي لك بقيمة الورقة المحسوبة. ال attributtes: classes_: لعرض ال labels التي وجدها. feature_importances_: عرض أهم الفيتشرز المؤثرة في التوقع. # استيراد المكتبات from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt #تحميل البيانات data = load_breast_cancer().data labels = load_breast_cancer().target # تقسيم البيانات X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=2021, shuffle =True) DecisionTreeC = DecisionTreeClassifier(criterion='gini',max_depth=3,random_state=2021) DecisionTreeC.fit(X_train, y_train) # حساب التوقع print('Train Score is : ' , DecisionTreeC.score(X_train, y_train)) print('Test Score is : ' , DecisionTreeC.score(X_test, y_test)) # 0.9473684210526315 # عرض الفئات الموجودة print('Classes are : ' , DecisionTreeC.classes_) # Classes are : [0 1] #عرض أهم الفيتشرز التي تؤثر في عملية التوقع print('feature importances are : ' , DecisionTreeC.feature_importances_) #حساب التوقع y_pred = DecisionTreeC.predict(X_test) # حساب التوقع كقيماحتمالية y_pred_prob = DecisionTreeC.predict_proba(X_test) 1 اقتباس
السؤال
Meezo ML
كيف أطبق Decision Tree لمهمة تصنيف Classification باستخدام مكتبة Sklearn ؟
1 جواب على هذا السؤال
Recommended Posts
انضم إلى النقاش
يمكنك أن تنشر الآن وتسجل لاحقًا. إذا كان لديك حساب، فسجل الدخول الآن لتنشر باسم حسابك.