#!/usr/bin/env python3
"""
linbet_crash_simulator.py
Offline crash game simulator and strategy tester.
This script:
- Simulates crash multipliers using a heavy-tailed distribution (Pareto-like).
- Lets you test simple strategies: fixed cashout, auto-repeat fixed bet, and a simple martingale-style stake increase after losses.
- Produces summary statistics and an optional histogram of multipliers.
Important:
- This is for offline analysis and education only.
- It does NOT connect to any betting site, manage accounts, or place real bets.
"""
from __future__ import annotations
import argparse
import math
import statistics
import sys
from typing import Dict, List, Optional, Tuple
import numpy as np
try:
import matplotlib.pyplot as plt # type: ignore
except Exception:
plt = None # plotting optional
def sample_multiplier(alpha: float = 1.5, scale: float = 1.0) -> float:
"""
Draw a multiplier >= scale using a Pareto Type I variant.
With np.random.pareto(alpha) the returned value is >= 0; adding 1 shifts the minimum to 1.
We then multiply by scale so that scale is the minimum possible multiplier.
Returns float >= scale
"""
return (np.random.pare
Brit had skript i5dm 3la la lin
#!/usr/bin/env python3
"""
linbet_crash_simulator.py
Offline crash game simulator and strategy tester.
This script:
- Simulates crash multipliers using a heavy-tailed distribution (Pareto-like).
- Lets you test simple strategies: fixed cashout, auto-repeat fixed bet, and a simple martingale-style stake increase after losses.
- Produces summary statistics and an optional histogram of multipliers.
Important:
- This is for offline analysis and education only.
- It does NOT connect to any betting site, manage accounts, or place real bets.
"""
from __future__ import annotations
import argparse
import math
import statistics
import sys
from typing import Dict, List, Optional, Tuple
import numpy as np
try:
import matplotlib.pyplot as plt # type: ignore
except Exception:
plt = None # plotting optional
def sample_multiplier(alpha: float = 1.5, scale: float = 1.0) -> float:
"""
Draw a multiplier >= scale using a Pareto Type I variant.
With np.random.pareto(alpha) the returned value is >= 0; adding 1 shifts the minimum to 1.
We then multiply by scale so that scale is the minimum possible multiplier.
Returns float >= scale
"""
return (np.random.pare
crash_simulator_improved.py
crash_simulator_improved.py
#!/usr/bin/env python3
"""
linbet_crash_simulator.py
Offline crash game simulator and strategy tester.
This script:
- Simulates crash multipliers using a heavy-tailed distribution (Pareto-like).
- Lets you test simple strategies: fixed cashout, auto-repeat fixed bet, and a simple martingale-style stake increase after losses.
- Produces summary statistics and an optional histogram of multipliers.
Important:
- This is for offline analysis and education only.
- It does NOT connect to any betting site, manage accounts, or place real bets.
"""
from __future__ import annotations
import argparse
import math
import statistics
import sys
from typing import Dict, List, Optional, Tuple
import numpy as np
try:
import matplotlib.pyplot as plt # type: ignore
except Exception:
plt = None # plotting optional
def sample_multiplier(alpha: float = 1.5, scale: float = 1.0) -> float:
"""
Draw a multiplier >= scale using a Pareto Type I variant.
With np.random.pareto(alpha) the returned value is >= 0; adding 1 shifts the minimum to 1.
We then multiply by scale so that scale is the minimum possible multiplier.
Returns float >= scale
"""
return (np.random.pare
crash_simulator_improved.py
crash_simulator_improved.py