المحتوى عن 'tcp'.



مزيد من الخيارات

  • ابحث بالكلمات المفتاحية

    أضف وسومًا وافصل بينها بفواصل ","
  • ابحث باسم الكاتب

نوع المُحتوى


التصنيفات

  • التخطيط وسير العمل
  • التمويل
  • فريق العمل
  • دراسة حالات
  • نصائح وإرشادات
  • التعامل مع العملاء
  • التعهيد الخارجي
  • التجارة الإلكترونية
  • الإدارة والقيادة
  • مقالات ريادة أعمال عامة

التصنيفات

  • PHP
    • Laravel
    • ووردبريس
  • جافاسكريبت
    • Node.js
    • jQuery
    • AngularJS
    • Cordova
  • HTML5
  • CSS
    • Sass
    • إطار عمل Bootstrap
  • SQL
  • سي شارب #C
    • منصة Xamarin
  • بايثون
    • Flask
    • Django
  • لغة روبي
    • إطار العمل Ruby on Rails
  • لغة Go
  • لغة جافا
  • لغة Kotlin
  • برمجة أندرويد
  • لغة Swift
  • لغة R
  • لغة TypeScript
  • سير العمل
    • Git
  • صناعة الألعاب
    • Unity3D
  • مقالات برمجة عامة

التصنيفات

  • تجربة المستخدم
  • الرسوميات
    • إنكسكيب
    • أدوبي إليستريتور
    • كوريل درو
  • التصميم الجرافيكي
    • أدوبي فوتوشوب
    • أدوبي إن ديزاين
    • جيمب
  • التصميم ثلاثي الأبعاد
    • 3Ds Max
    • Blender
  • مقالات تصميم عامة

التصنيفات

  • خواديم
    • الويب HTTP
    • قواعد البيانات
    • البريد الإلكتروني
    • DNS
    • Samba
  • الحوسبة السّحابية
    • Docker
  • إدارة الإعدادات والنّشر
    • Chef
    • Puppet
    • Ansible
  • لينكس
  • FreeBSD
  • حماية
    • الجدران النارية
    • VPN
    • SSH
  • مقالات DevOps عامة

التصنيفات

  • التسويق بالأداء
    • أدوات تحليل الزوار
  • تهيئة محركات البحث SEO
  • الشبكات الاجتماعية
  • التسويق بالبريد الالكتروني
  • التسويق الضمني
  • استسراع النمو
  • المبيعات

التصنيفات

  • إدارة مالية
  • الإنتاجية
  • تجارب
  • مشاريع جانبية
  • التعامل مع العملاء
  • الحفاظ على الصحة
  • التسويق الذاتي
  • مقالات عمل حر عامة

التصنيفات

  • الإنتاجية وسير العمل
    • مايكروسوفت أوفيس
    • ليبر أوفيس
    • جوجل درايف
    • شيربوينت
    • Evernote
    • Trello
  • تطبيقات الويب
    • ووردبريس
    • ماجنتو
  • أندرويد
  • iOS
  • macOS
  • ويندوز

التصنيفات

  • شهادات سيسكو
    • CCNA
  • شهادات مايكروسوفت
  • شهادات Amazon Web Services
  • شهادات ريدهات
    • RHCSA
  • شهادات CompTIA
  • مقالات عامة

أسئلة وأجوبة

  • الأقسام
    • أسئلة ريادة الأعمال
    • أسئلة العمل الحر
    • أسئلة التسويق والمبيعات
    • أسئلة البرمجة
    • أسئلة التصميم
    • أسئلة DevOps
    • أسئلة البرامج والتطبيقات
    • أسئلة الشهادات المتخصصة

التصنيفات

  • ريادة الأعمال
  • العمل الحر
  • التسويق والمبيعات
  • البرمجة
  • التصميم
  • DevOps

تمّ العثور على 4 نتائج

  1. إن بروتوكول التحكم في نقل البيانات (Transmission Control Protocol) وبروتوكول الإنترنت (Internet Protocol) المسمى اختصارًا TCP/IP هو معيار يضم مجموعة بروتوكولاتٍ مطورةً في نهاية السبعينات من القرن الماضي من وكالة مشاريع أبحاث الدفاع المتقدمة (Defense Advanced Research Projects Agency‏ [DARPA])، كطرق للتواصل بين مختلف أنواع الحواسيب وشبكات الحواسيب؛ إن بروتوكول TCP/IP هو العصب المحرك للإنترنت، وهذا ما يجعله أشهر مجموعة بروتوكولات شبكيّة على وجه الأرض. TCP/IPالمكونان الرئيسيان من مكونات TCP/IP يتعاملان مع مختلف نواحي شبكة الحاسوب؛ بروتوكول الإنترنت -جزء «IP» من TCP/IP- هو بروتوكول عديم الاتصال (connectionless) يتعامل مع طريقة توجيه (routing) الرزم الشبكية مستخدمًا ما يسمى «IP Datagram» كوحدة رئيسية للمعلومات الشبكية؛ تتكون IP Datagram من ترويسة، يتبعها رسالة. إن بروتوكول التحكم في نقل البيانات هو «TCP» من TCP/IP، ويُمكِّن مضيفي الشبكة من إنشاء اتصالاتٍ يستطيعون استخدامها لتبادل مجاري البيانات (data streams)؛ ويَضمَن أيضًا بروتوكول TCP أن البيانات التي أُرسِلَت بواسطة تلك الاتصالات ستُسَلَّم وتصل إلى مضيف الشبكة المُستقبِل كما أُرسِلَت تمامًا وبنفس الترتيب من المُرسِل. ضبط TCP/IPيتكون ضبط TCP/IP من عدِّة عناصر التي يمكن أن تُغيَّر بتعديل ملفات الإعدادات الملائمة، أو باستخدام حلول مثل خادوم «بروتوكول ضبط المضيف الديناميكي» (Dynamic Host Configuration Protocol‏ [DHCP])، الذي يمكن أن يُضبَط لتوفير إعدادات TCP/IP صالحة لعملاء الشبكة تلقائيًا، يجب أن تُضبط قيم تلك الإعدادات ضبطًا صحيحًا لكي تساعد في عمل الشبكة عملًا سليمًا في نظام أوبنتو عندك. عناصر الضبط الخاصة ببروتوكول TCP/IP ومعانيها هي: عنوان IP: هو سلسة نصية فريدة يُعبَّر عنها بأربع مجموعات من أرقام تتراوح بين الصفر (0)، ومئتان وخمسٌ وخمسون (255)، مفصولةٌ بنقط، وكل أربعة أرقام تمثل ثمانية (8) بتات من العنوان الذي يكون طوله الكامل اثنان وثلاثون (32) بتًا، تُسمى هذه الصيغة باسم «dotted quad notation». قناع الشبكة: قناع الشبكة الفرعية (أو باختصار: قناع الشبكة [netmask])، هو قناع ثنائي يفصل قسم عنوان IP المهم للشبكة، عن قسم العنوان المهم للشبكة الفرعية (Subnetwork)؛ على سبيل المثال، في شبكة ذات الفئة C‏ (Class C network)، قناع الشبكة الافتراضي هو 255.255.255.0، الذي يحجز أول ثلاثة بايتات من عنوان IP للشبكة، ويسمح لآخر بايت من عنوان IP أن يبقى متاحًا لتحديد المضيفين على الشبكة الفرعية. عنوان الشبكة: يمثل عنوان الشبكة (Network Address) البايتات اللازمة لتمثيل الجزء الخاص من الشبكة من عنوان IP، على سبيل المثال، المضيف صاحب العنوان 12.128.1.2 في شبكة ذات الفئة A يستطيع استخدام 12.0.0.0 كعنوان الشبكة، حيث يمثل الرقم 12 البايت الأول من عنوان IP (جزء الشبكة)، وبقية الأصفار في البايتات الثلاثة المتبقية تمثل قيم مضيفين محتملين في الشبكة؛ وفي مضيف شبكة يستخدم عنوان IP الخاص 192.168.1.100 الذي يستخدم بدوره عنوان الشبكة 192.168.1.0 الذي يحدد أول ثلاثة بايتات من شبكة ذات الفئة C والتي هي 192.168.1، وصفرًا الذي يُمثِّل جميع القيم المحتملة للمضيفين على الشبكة. عنوان البث: عنوان البث (Broadcast Address) هو عنوان IP يسمح لبيانات الشبكة بأن تُرسَل إلى كل المضيفين معًا في شبكة محلية بدلًا من إرسالها لمضيف محدد. العنوان القياسي العام للبث لشبكات IP هو 255.255.255.255، لكن لا يمكن استخدام هذا العنوان لبث الرسائل لكل مضيف على شبكة الإنترنت، لأن الموجهات (routers) تحجبها؛ ومن الملائم أن يُضبَط عنوان البث لمطابقة شبكة فرعية محددة، على سبيل المثال، في شبكة خاصة ذات الفئة C،‏ أي 192.168.1.0، يكون عنوان البث 192.168.1.255؛ تُولَّد رسائل البث عادةً من بروتوكولات شبكيّة مثل بروتوكول استبيان العناوين (Address Resolution Protocol‏ [ARP])، وبروتوكول معلومات التوجيه (Routing Information Protocol‏ [RIP]). عنوان البوابة: إن عنوان البوابة (Gateway Address) هو عنوان IP الذي يمكن الوصول عبره إلى شبكة معينة أو إلى مضيف معين على شبكة؛ فإذا أراد أحد مضيفي الشبكة التواصل مع مضيفٍ آخر، ولكن المضيف الآخر ليس على نفس الشبكة، فيجب عندئذٍ استخدام البوابة؛ في حالات عديدة، يكون عنوان البوابة في شبكةٍ ما هو الموجه (router) على تلك الشبكة، الذي بدوره يُمرِّر البيانات إلى بقية الشبكات أو المضيفين كمضيفي الإنترنت على سبيل المثال. يجب أن تكون قيمة عنوان البوابة صحيحةً، وإلا فلن يستطيع نظامك الوصول إلى أي مضيف خارج حدود شبكته نفسها. عنوان خادوم الأسماء: عناوين خادوم الأسماء (Nameserver Addresses) تمثل عناوين IP لخواديم خدمة أسماء المضيفين DNS، التي تستطيع استبيان (resolve) أسماء مضيفي الشبكة وتحويلها إلى عناوين IP؛ هنالك ثلاث طبقات من عناوين خادوم الأسماء، التي يمكن أن تُحدَّد بترتيب استخدامها: خادوم الأسماء الرئيسي (Primary)، وخادوم الأسماء الثانوي (Secondary)، وخادوم الأسماء الثلاثي (Tertiary)، ولكي يستطيع نظامك استبيان أسماء أسماء مضيفي الشبكة وتحويلها إلى عناوين IP الموافقة لهم، فيجب عليك تحديد عناوين خادوم الأسماء الذي تثق به لاستخدامه في ضبط TCP/IP لنظامك؛ في حالاتٍ عديدة، تُوفَّر هذه العناوين من موزع خدمة شبكتك، لكن هنالك خواديم أسماء عديدة متوفرة مجانًا للعموم، كخواديم Level3‏ (Verizon) بعناوين IP تتراوح بين 4.2.2.1 إلى 4.2.2.6. تنبيه: إن عنوان IP، وقناع الشبكة، وعنوان الشبكة، وعنوان البث، وعنوان البوابة تُحدَّد عادةً بالإمكان الملائمة لها في ملف ‎/etc/network/interfaces، عناوين خادوم الأسماء تُحدَّد عادة في قسم nameserver في ملف ‎/etc/resolve.conf، للمزيد من المعلومات، راجع صفحة الدليل لكلٍ من interfaces و resolv.conf على التوالي وبالترتيب، وذلك بكتابة الأوامر الآتية في محث الطرفية: للوصول إلى صفحة دليل interfaces، اكتب الأمر الآتي: man interfacesوللوصول إلى صفحة دليل resolv.conf: man resolv.confتوجيه IPيمثِّل توجيه IP‏ (IP Routing) الوسائل اللازمة لتحديد واكتشاف الطرق في شبكات TCP/IP بالإضافة إلى تحديد بيانات الشبكة التي ستُرسَل، يَستخدِم التوجيه ما يسمى «جداول التوجيه» (routing tables) لإدارة تمرير رزم بيانات الشبكة من مصدرها إلى وجهتها؛ وذلك عادة بواسطة عقد شبكيّة وسيطة تسمى «موجهات» (routers)؛ وهنالك نوعان رئيسيان من توجيه IP: التوجيه الثابت (static routing)، والتوجيه الديناميكي (dynamic routing). يشتمل التوجيه الثابت على إضافة توجيهات IP يدويًّا إلى جدول توجيهات النظام، ويتم ذلك عادةً بتعديل جدول التوجيهات باستخدام الأمر route؛ يتمتع التوجيه الثابت بعدِّة مزايا تميزه عن التوجيه الديناميكي، كسهولة استخدامه في الشبكات الصغيرة، وقابلية التوقع (يُحسَب جدول التوجيهات مسبقًا دائمًا، وهذا ما يؤدي إلى استخدام نفس المسار في كل مرة)، ويؤدي إلى حِملٍ قليل على الموجهات الأخرى ووصلات الشبكة نتيجةً لعدم استخدام بروتوكولات التوجيه الديناميكي؛ لكن يواجه التوجيه الثابت بعض الصعوبات أيضًا؛ فعلى سبيل المثال، التوجيهُ الثابتُ محدودٌ للشبكات الصغيرة، ولا يمكن أن يتوسَّع توسعًا سهلًا، ويصعب عليه التأقلم مع نقصان أو فشل معدات الشبكة في الطريق المسلوك نتيجةً للطبيعة الثابتة لذاك الطريق. يُعتَمَد على التوجيه الديناميكي في الشبكات الكبيرة ذات احتمالات عديدة للطرق الشبكية المسلوكة من المصدر إلى الوجهة، وتُستخدَم بروتوكولات توجيه خاصة، كبروتوكول معلومات الموجه (Router Information Protocol [RIP])، الذي يتولَّى أمر التعديلات التلقائية في جداول التوجيه، مما يجعل من التوجيه الديناميكي أمرًا ممكنًا؛ وللتوجيه الديناميكي مزايا عدّة عن التوجيه الثابت، كإمكانية التوسع بسهولة، والتأقلم مع نقصان أو فشل معدات الشبكة خلال الطريق المسلوك في الشبكة، بالإضافة إلى الحاجة لإعداداتٍ قليلةٍ نسبيًا لجداول التوجيه، ﻷن الموجهات تعلم عن وجود وتوفر بعضها بعضًا؛ وهذه الطريقة تمنع حدوث مشاكل في التوجيه نتيجةً لخطأ بشري في جداول التوجيه. لكن التوجيه الديناميكي ليس كاملًا، ويأتي مع عيوب، كالتعقيد، والحِمل الزائد على الشبكة بسبب التواصل بين الموجهات، التي لا تفيد المستخدمين المباشرين فوريًا، وتستهلك التراسل الشبكي. بروتوكولَي TCP و UDPإن بروتوكول TCP هو بروتوكول مبني على الاتصال (connection-based)، ويوفر آليةً لتصحيح الأخطاء، وضمانةً لتسليم البيانات عبر ما يُعرَف بالمصطلح «التحكم في الجريان» (flow control)، يُحدِّد التحكم في الجريان متى يجب إيقاف نقل البيانات، وإعادة إرسال الرزم التي أُرسِلَت سابقًا والتي واجهة مشاكل كالتصادمات (collisions)؛ إذ أنَّ التأكيد على الوصول الدقيق والكامل للبيانات عبر بروتوكول TCP هو أمر جوهري في عملية تبادل البيانات المهمة كالتحويلات في قواعد البيانات. أما بروتوكول UDP‏ (User Datagram Protocol) على الجهة الأخرى، هو بروتوكول عديم الاتصال (connectionless)، الذي نادرًا ما يتعامل مع عمليات نقل البيانات المهمة لأنه يفتقر إلى التحكم في جريان البيانات أو أيّة طريقة أخرى للتأكد من توصيل البيانات عمليًا؛ لكن بروتوكول UDP يُستخدَم استخدامًا شائعًا في التطبيقات كتدفق (streaming) الصوت والصورة، حيث أنه أسرع بكثير من TCP ﻷنه لا يحتوي على آليةٍ لتصحيح الأخطاء والتحكم في الجريان، وفي الأماكن التي لا يهم فيها فقدان بعض الرزم الشبكية كثيرًا. بروتوكول ICMPإن بروتوكول ICMP‏ (Internet Control Messaging Protocol) هو إضافة إلى بروتوكول الإنترنت (IP) الذي يُعرَّف في RFC‏‏ (Request For Comments) ذي الرقم ‎#792 ويدعم التحكم في احتواء الرزم الشبكية والأخطاء ورسائل المعلومات، يُستخدَم بروتوكول ICMP بتطبيقات شبكيّة كأداة ping، التي تستطيع تحديد إذا ما كان جهازٌ ما متاحًا على الشبكة، أمثلة عن رسالة الخطأ المُعادَة من ICMP -التي تكون مفيدةً لمضيفي الشبكة وللأجهزة كالموجهات- تتضمن رسالتَي «Destination Unreachable» و «Time Exceeded». العفاريتالعفاريت (Daemons) هي تطبيقات نظام خاصة التي تعمل عادةً عملًا دائمًا في الخلفية، وتنتظر طلبياتٍ للوظائف التي توفرها من التطبيقات الأخرى، يتمحور عمل العديد من العفاريت حول الشبكة، وبالتالي فإن عددًا كبيرًا من العفاريت التي تعمل في الخلفية في نظام أوبنتو تُوفِّر وظائف تتعلق بالشبكة؛ بعض الأمثلة عن عفاريت الشبكة تتضمن «عفريت بروتوكول نقل النص الفائق» (HyperText Transport Protocol Daemon‏ [httpd])، الذي يوفر وظيفة خادوم الويب؛ و «عفريت الصدفة الآمنة» (Secure SHell Daemon‏ [sshd])، الذي يوفر طريقةً للدخول الآمن عن بُعد وإمكانيات نقل الملفات؛ و «عفريت بروتوكول الوصول إلى رسائل الإنترنت» (Internet Message Access Protocol Daemon‏ [imapd]) الذي يوفر خدمات البريد الإلكتروني... مصادرتتوفر صفحات دليلٍ لبروتوكولي TCP و IP التي تحتوي على معلومات قيمّة.راجع أيضًا المصدر الآتي من IBM‏: «TCP/IP Tutorial and Technical Overview».مصدرٌ أخرى هو كتاب «TCP/IP Network Administration» من O'Reilly.ترجمة -وبتصرف- للمقال Ubuntu Server Guide: Networking TCP/IP.
  2. icnd1/ccent 100-101

    لفهم دور طبقة الإنترنت في تجميعة بروتوكول TCP/IP، فعلينا أن نفهم وظائف بروتوكول TCP/IP أولًا؛ باختصار، إن IP مسؤولٌ عن تمرير الرزم من المصدر إلى الوجهة في الشبكة؛ تكون الرزم هي وحدة البيانات (data unit) لطبقة الإنترنت في TCP/IP؛ وهي وحدات تتضمِّن البيانات التي ستُرسَل بالإضافة إلى معلوماتٍ كافية لكل رزمة لكي تُعامَل بشكلٍ مستقل وتُوجَّه في الشبكة. تتضمن آلية التوجيه اختيار أفضل طريق للوصول من المصدر إلى الوجهة؛ ويجب الآن تعريف الوجهات والمصدر كأجهزة ضمن الشبكة، ولهذا فإن الوظيفة الثانية لبروتوكول الإنترنت هي توفير عناوين لتلك الأجهزة، وتلك العناوين يجب أن تكون هيكليّة، لأننا سنناقش إرسال البيانات من الجهاز 1 في الشبكة 1 إلى الجهاز 1 في الشبكة 2؛ وبالطبع ما سبق هو مجرد مثال عن آلية تعريف الأجهزة بشكلٍ هيكلي. الأمر الثالث هو أنَّ بروتوكول الإنترنت ذو طبيعة عديمة الاتصال (connectionless)؛ أي أنه لا يتطلب إنشاء اتصال، فمثالٌ عن إنشاء اتصال هو رفع سماعة الهاتف وطلب الرقم قبل أن نتمكن من التحدّث؛ أما الطريقة التي يعمل بها IP تُشابِه إرسال الأحرف عبر البريد العادي، حيث ستُرسَل كلماتنا ونتمنى أنها ستصل إلى وجهتها، أي أنَّ البروتوكول نفسه لن يوفِّر آلياتٍ لاسترداد البيانات أو لضمان وصولها؛ فمن واجبات بقية الطبقات توفيرُ الوثوقية (reliability)؛ وهذا يعتمد على نوعية التطبيق؛ فمثلًا، تتطلب عملية نقل ملفٍ وثوقيةً وتأكيدًا أن البيانات ستصل إلى الوجهة كما أُرسِلَت، أما نقل الصوت في الوقت الحقيقي (real-time) فسيستفيد من السرعة أكثر من الوثوقية. إحدى وظائف IP كبروتوكول هي تعريف العناوين والتعرّف على الأجهزة ضمن هيكلية الشبكات. لنلقِ الآن نظرةً إلى بنية عناوين IP؛ إن عناوين IP هي مُعرِّفاتٌ بطول 32 بت التي تميّز كل جهاز على شبكة IP، أي أن على الجهاز أن يملك عنوان IP فريد إذا أراد التواصل مع بقية الأجهزة على الشبكة. أي لو أردنا الاتصال من الجهاز 1 في الشبكة 1 إلى الجهاز 2 في الشبكة 2، فيجب أن تملك تلك الأجهزة عناوين IP؛ وفي الواقع، تتألف عناوين IP من مكوِّنَين هما مُعرِّف المضيف (host ID) الذي يُسنَد للأجهزة المتصلة بالشبكة، ومُعرِّف الشبكة (network identifier) الذي يُحدِّد القسم أو الشبكة التي تنتمي تلك الأجهزة إليها. وهذا شبيهٌ بطريقة تنظيم الشوارع والمباني هيكليًّا، حيث لديك أرقامٌ للمنازل والمباني، لكنها تنتمي إلى نفس الشارع. ترويسة IPيجب أن تحتوي الرزم على مصدرها ووجهتها عند محاولة إرسالها من جهازٍ إلى آخر، وهذه هي كيفية توجيه الرزم في شبكةٍ من الأجهزة؛ حيث تنظر تلك الأجهزة إلى عنوان الوجهة وتحسب أفضل طريق للوصول إلى هناك. تُضاف هذه البيانات على شكل ترويسة في وحدة نقل البيانات (data unit) لبروتوكول طبقة الإنترنت؛ ولأن البروتوكول المستخدم هنا هو بروتوكول IP؛ فإن وحدة نقل البيانات المستعملة هي الرزم (packets)، ولأن الهيكلية مُضمَّنة في العناوين، فتتمكن الأجهزة مثل الموجَّهات من فهم تلك الهيكلية وتوجيه الرزم توجيهًا صحيحًا. وذلك مثل مبدِّلات الهاتف الأرضي (telephone switch)، على سبيل المثال، ستتمكّن من تحديد رمز المنطقة بالنظر إلى أول ثلاثة أرقام من رقم الهاتف؛ وبطريقةٍ مشابهة، ستنظر الموجَّهات إلى الشبكة الهدف وستتمكن من توجيه الرزم الشبكية توجيهًا صحيحًا إلى تلك الوجهة حتى دون الحاجة إلى قراءة عنوان الوجهة بأكمله. تحتوي بعض مكونات ترويسة IP أيضًا على نوع الخدمة لتحديد «جودة الخدمة» (QoS) وزمن بقاء الرزمة «على قيد الحياة» لكي لا تبقى تَتَنَقَّل في الشبكة إلى ما لا نهاية... يمثِّل هذا الرقم «تاريخًا للصلاحية» لتلك الرزمة. صيغة عناوين IPأما ما يتعلق ببنية عناوين IP؛ فيتألّف العنوان من سلسلةٍ من 32 بتًا تتكون من الرقمين 0 و1؛ ويُشكِّل جزءٌ من هذا العنوان «مُعرِّف المضيف» (host ID)، وجزءٌ آخرٌ سيُشكِّل «مُعرِّف الشبكة» (network ID). وتكون الصيغة الثنائية (binary) مثاليةً للموجهات، لكنها ليست ملائمةً للبشر، لذلك سنحتاج إلى شيءٍ أبسط وقابل للتذكر بسهولة، ولهذا السبب ستُقسَّم السلسلة ذات 32 بتًا إلى أربع ثمانيّات (octet) أو بايتات؛ حيث يتكوّن كل بايت من 8 بت، ثم ستحوَّل الصيغة الثنائية إلى أرقامٍ عشرية، وستُشرَح عملية التحويل تلك لاحقًا في هذه الدورة التدريبية وسنُفصِّلها فيما بعد. لذا، ستُتحوَّل السلسلة ذات 32 بتًا إلى 4 بايت، التي ستصبح بدورها أرقامًا عشرية؛ ثم ستُفصَل تلك الأرقامُ بنقطٍ، مما سيُنتِج الصيغة العشرية المفصولة بنقط (dotted decimal notation) التي نسميها «عناوين IP». السؤال الآن هو: كيف نُميّز جزءَ الشبكة في العنوان من جزء المضيف؟ في بدايات استخدام الإنترنت، خرجت هيئة IANA (اختصار للعبارة Internet Assigned Numbers Authority) بمخططٍ لتقسيم العناوين إلى فئات، حيث تُحدِّد الفئة عددَ البتات المخصصة لمعرِّف الشبكة وعدد البتات المخصصة للمضيفين؛ تُعرَّف فئات العناوين وتُميَّز بسلسلة بتات تبدأ من أول ثمانيّة، ولهذا تستطيع تحديد فئة الشبكة بالنظر إلى أول ثمانيّة؛ فجميع العناوين التي تبدأ بصفر ستكون من فئة العناوين A ‏(Class A). حيث تحجز فئة العناوين A أول ثمانيّة لتمثِّل معرِّف الشبكة، وتُترَك الثمانيّة الثانية والثالثة والرابعة لتمثِّل معرِّف المضيف؛ وهذا منطقيٌ في بدايات الإنترنت، لأنه كان لديهم عددٌ قليلٌ جدًا من الشبكات، وفي كلِّ شبكةٍ عددٌ كبيرٌ من المضيفين؛ وتلك الشبكات تكون عادةً تابعةً للجامعات أو للحكومات أو للمواقع العسكرية. تُعرَف عناوين الفئة B بوجود واحد وصفر في أول بتَّين (first 2 bits) من أول ثمانيّة، ويُحجَز أول بايتين للشبكة وآخر بايتين للمضيفين؛ وبشكلٍ مشابه، تبدأ الفئة C بالسلسلة 110 ويُحجَز أول ثلاث ثمانيّات للشبكة، وثمانيّة واحد فقط للمضيفين. في النهاية، بناء عنوان IP يعني إسناد معرِّفات فريدة للأجهزة ضمن الشبكة، ثم إعطاؤها نفس معرِّف الشبكة كي تصبح جزءًا من شبكةٍ واحد، وهذا يشبه كثيرًا أرقام المنازل المختلفة في شارعٍ ما، لكن اسم الشارع هو نفسه. مجالات عناوين IPهنالك نتيجتان حصلنا عليهما من استراتيجية التنظيم وفق فئات: أولاها أنَّه يصعب علينا نحن البشر التعرّف على سلسلة البتات في أول ثمانيّة، لذلك حوّلناها إلى أرقامٍ عشريةٍ لتعطينا مجالًا من الأرقام سيُسهِّل علينا التعرف على كل فئةٍ من الفئات. لذا، لو كانت أول ثمانيّة تقع بين 1 إلى 126، فإننا نتحدَّث عن الفئة A ‏(Class A)، وإذا نظرنا إلى أوّل ثمانيّة ووجدناها تقع بين 128 و 191، فإننا نتحدث عن الفئة B؛ أما لو كان المجال بين 192 و 223، فإن الفئة هي C. لاحظ أن بعض الأرقام ناقصة مثل 127، الذي هو رقمٌ مجوزٌ لا يمكن إسناده للشبكات، ويُستخدَم في اختبار الاتصال إلى المضيف المحلّي عبر بطاقة loopback. النتيجة الثانية هي أننا ما زلنا نتعامل مع عددٍ محدودٍ من البتات، أي كلما أسندنا المزيد من الثمانيّات إلى مُعرِّف الشبكة، كان عدد البتات المتبقية لاستخدامها للمضيفين أقل، والعكس صحيح. لو حجزت الفئة A أول بايت للشبكة وثلاثة بايتات للمضيفين، فسيكون عدد المضيفين كبيرًا لكن عدد الشبكات قليل. تُوفِّر الفئة C مكانًا للمضيفين بعدد 254 كحدٍ أقصى؛ قد تُفاجَئ من ذلك ﻷن الفئة C تحجز ثمانيّة تحتوي 8 بتات للمضيفين، لكن 2 للقوة 8 (استنادًا إلى العمليات على الأعداد الثنائية) يعطي 256؛ لذا قد تظن أنك قادرٌ على الحصول على 256 عنوانًا صالحًا للاستخدام كعناوين للمضيفين في الشبكات ذات الفئة C، لكن هنالك بعض العناوين المحجوزة التي لا تستطيع إسنادها للأجهزة. فئة عناوين IP قيمة أول ثمانيّة بالنظام العشري قيمة أول ثمانيّة بالنظام الثنائي الحد الأقصى لعدد للمضيفين الفئة A ‎1 - 126 ‎00000001 إلى 01111110 16‎ 777 214 الفئة B ‎128 – 191 ‎10000000 إلى 10111111 ‎65 534 الفئة C ‎192 - 223 ‎11000000 إلى ‎11011111 254 تُمثِّل جميع الأصفار في قسم المضيف من عنوان IP الشبكةَ نفسها؛ على سبيل المثال، إذا كان لدي العنوان 10.0.0.0، فلا يمكن إسناد هذا العنوان إلى جهازٍ على الشبكة، حيث يُمثِّل الشبكة«10» نفسها؛ وبشكلٍ مشابهٍ، فإن الرقم 1 في قسم المضيف من العنوان هو عنوانٌ محجوزٌ أيضًا، حيث يمثِّل عنوان الإذاعة (broadcast) في تلك الشبكة. تُستخدم الإذاعة لإرسال معلومات إلى كل الأجهزة في الشبكة. ويمثِّل الرقم 1 في الثمانيّات عند تحويلها إلى النظام العشري الرقم 255؛ أي أنه على سبيل المثال، يمثِّل العنوانُ 200.1.1.255 عنوانَ الإذاعة في الشبكة «200.1.1». يُعتَبر هذا النوع من الإذاعة «إذاعةٌ موجَّهة» (directed broadcast) في تلك الشبكة؛ لكن أكبر عناوين الإذاعة هو عندما يملأ الرقم 1 جميع البتات؛ وهذا ما يُسمى «إذاعة محليّة»، ولا يمكن إعادة توجيه الإذاعات المحلية. عناوين IP العامةالإنترنت هي شبكة من الشبكات، وهي شبكة عامة شاملة تصل الأجهزة عالميًا ببعضها. وباتباع قواعد IP الأساسية، يجب أن تملك تلك الأجهزة عناوين IP فريدة عالميًا؛ قد يُسبِّب تكرار العناوين عدم استقرار الإنترنت؛ لأنه قد تصل البيانات إلى الوجهة الخطأ عندما يكون هنالك عناوين مكررة؛ أو قد يُسبِّب تكرار عنوان IP المصدر إلى حدوث اضطرابات في الوجهة. أنشَأت هيئة IANA مجالاتٍ لعناوين IP العامّة لكل فئة، وبهذا سنضمن عدم حدوث تكرار، وأنَّ كلَّ شيءٍ تحت السيطرة من هيئة مركزية لإسناد عناوين IP. فإذا أردت الحصول على عنوان IP عام على شبكة الإنترنت، فعليك التواصل مع IANA والتقدّم بطلبٍ رسمي؛ وحاليًا، يمكنك حجز العناوين عبر الهيئة المركزية وعبر هيئات موزَّعة في مناطق جغرافية مختلفة؛ فهيئة APNIC توزِّع عناوين IP لآسيا، و ARIN للأمريكيتَين، و RIPE لأوروبا. عناوين IP الخاصةبسبب وجود عدد هائل من الأجهزة في الشبكة العامة، فأصبح جليًّا أن 32 بتًا في عناوين IPv4 لن تكون كافيةً. IPv4 هو النسخة الحالية من IP والمتوفرة تجاريًا والتي تُستخدَم في الإنترنت؛ بدأت النسخة السادسة IPv6 بالانتشار في الآونة الأخيرة، وستُصبِح قريبًا النسخة المعيارية في الشبكات؛ ولكن ظهرت إلى ذاك الحين حلولٌ بديلةٌ للسماح للمزيد من الأجهزة بالحصول على عناوين IP دون الحاجة إلى أن تكون عامّة (public)؛ يُمكن أن تُستخدَم مجالات العناوين الخاصة المذكورة هنا للشبكات من فئات A وB و C؛ وستكون هذه العناوين مستقلّة عن الإنترنت ومن ثم يمكن تحويلها (translated) إلى عنوانٍ عام عندما تحتاج الرزم إلى الوصول إلى شبكة عامّة؛ ويمكن للأجهزة ذات العناوين الخاصة أن تصل إلى الشبكات العامة بالحصول على عنوان IP عام؛ وعملية التحويل هذه تُسمى NAT ‏(network address translation)؛ ليس لمجالات العناوين الخاصة أي معنى في شبكة الإنترنت وليست قابلة للتوجيه في تلك الشبكة، وهذا يعني أن رزم IP المرتبطة بهذه العناوين كوجهة أو مصدر سيتم تجاهلها في موجهات الإنترنت؛ وقد عُرِّفَت هذه العناوين الخاصة في RFC 1918. الفئة مجال العناوين الخاص A من 10.0.0.0 إلى 10.255.255.255 B من 172.16.0.0 إلى 172.31.255.255 C من 192.168.0.0 إلى 192.168.255.255 DHCPبعد أن تعلمت تصميم عناوين IP، يمكنك الآن حجز وإسناد وضبط عناوين IP على الأجهزة، ربما تتبع القواعد الأساسية، لنقل على سبيل المثال، سيكون لجميع الأجهزة في الشبكة 1 نفس معرِّف الشبكة، لكن مُعرِّفات المضيفين ستكون فريدةً؛ أصبحت عملية ضبط عناوين IP على جميع الأجهزة أمرًا مرهقًا وصعب الإدارة، وذلك اعتمادًا على عدد الأجهزة المتصلة بالشبكة؛ وهذه هو السبب الرئيسي وراء بروتوكولات مثل DHCP (بروتوكول ضبط المضيف الديناميكي [Dynamic Host Configuration Protocol])؛ يُستخدَم هذا البروتوكول لإسناد عناوين IP تلقائيًا دون تدخل بشري؛ إذ يَستخدِم خادمًا مركزيًا ليدير مجالاتٍ من عناوين IP لأجهزةٍ مختلفة؛ تؤجَّر (lease) عناوين IP إلى الأجهزة ويكون لها تاريخ صلاحية محدد يجب على الجهاز تجديده إن أراد الاحتفاظ بعنوان IP. تبدأ هذه الأجهزة اتصالها بالشبكة دون عنوان IP، ثم تطلب واحدًا من الخادوم؛ ويتم ذلك بسلسلةٍ من الرسائل المتبادلة بين العملاء والخواديم لحجز وإسناد عنوان IP. DNSبروتوكول آخر هو بروتوكول DNS ‏(Domain Name System)؛ هذا تطبيقٌ مُحدَّدٌ في تجميعة TCP/IP؛ وهو موجود لأنه يساعدنا في تذكر عناوين الأجهزة بشكل أسهل؛ فعند الاتصال إلى جهازٍ معيّن، فإننا نتذكر اسم المضيف وليس علينا تذكر عنوان IP؛ فدور خدمة DNS هي تحويل أسماء المضيفين إلى عناوين IP؛ فعندما تكتب عنوان URL في متصفحك، مثل academy.hsoub.com، فإن جهازك سيبحث عن خادوم DNS في الشبكة، ويطلب منه تحويل الاسم إلى عنوان IP، ويستلم المعلومات، ثم يستخدم العنوان الذي حصل عليه للاتصال بالجهاز. ipconfigيمكننا استخدام الأمر ipconfig في واجهة سطر الأوامر في أنظمة ويندوز لكي نراقِب ونتأكد من الضبط الشبكي؛ حيث يستطيع استئجار عنوان IP مع قناع الشبكة الفرعية (subnet mask)، والبوابة الافتراضية (default gateway)، وخواديم DHCP، وخواديم DNS، ومعلوماتٍ حول مدة صلاحية عناوين IP. يمكن إظهار جميع الضبط بالكلمة المفتاحية ‎/all لأمر ipconfig؛ الكلمات المفتاحية الأخرى مثل ‎/release لإطلاق عنوان IP من خادم DHCP، و ‎/renew لتجديد مدة صلاحية عنوان IP، أو ‎/?‎ للحصول على مساعدة. ترجمة -وبتصرّف- للمقال Understanding the TCP/IP Internet Layer. Internal IP Addressing.
  3. عرضنا في الجزء الأول من هذا الدّليل بعض المفاهيم الأساسيّة في مجال الشّبكات. نستكمل الحديث في هذا المقال بالتطرّق إلى ماهيّة الواجهات في الشّبكة والبروتوكولات المستخدَمة لربط الشّبكات. الواجهاتالواجهات هي نقاط الاتّصال بالنّسبة لحاسوبك. تُربَط كلّ واجهة بجهاز طرفيّ ملموس أو افتراضيّ. توجد عادةً واجهة شبكة قابلة للإعداد لكلّ بطاقة Ethernet أو بطاقة شبكة لا سلكيّة على الخادوم. تُعرَّف واجهة شبكة افتراضيّة تُسمّى loopback (الاسترجاع) أو localhost (المستضيف المحلّي) لكلّ بطاقة شبكة. تُستخدَم هذه الواجهة لتوصيل العمليّات أو التّطبيقات العاملة على نفس الجهاز في ما بينها. تظهر هذه الواجهة في العديد من الأدوات باسم lo. يُعدّ مدراء الشّبكات في الغالب واجهة لخدمة البيانات القادمة من شبكة الإنترنت وأخرى للشّبكة المحليّة أو الخاصّة. على سبيل المثال، يضبُط مزّودو الخدمات السّحابيّة Cloud services الخواديم الخاصّة الافتراضيّة Virtual private server, VPS للعمل بواجهتيْ شبكة (إضافة إلى الواجهة المحليّة lo): الأولى باسم eth0 مضبوطة لمعالجة البيانات القادمة من الإنترنت، والثّانيّة eth1 للاتّصال بالشّبكة الخاصّة بمزوّد الخدمة. البروتوكولاتيعمل ربط الشّبكات عن طريق تركيب مجموعة من البروتوكولات فوق بعضها. بهذه الطّريقة يُمكن إرسال قطعة بيانات باستخدام بروتوكولات مختلفة يغلّف كلٌّ منها الآخر. سنعرض لبعض البروتوكولات شائعة الاستخدام مع محاولة شرح الفروق في ما بينها إضافةً إلى السّيّاق والمستوى الّذي تتدخّل فيه. نبدأ بالبروتوكولات الّتي تعمل في الطّبقات الدّنيا من الشّبكة ونصعد إلى البروتوكولات الأكثر تجريدًا (الطّبقات العليا). 1- التّحكّم في الوصول إلى الوسائط Media Access Control, MACيُستخدَم لتمييز الأجهزة الطّرفيّة. يُفترَض أن يكون لدى كلّ جهاز طرفيّ عنوان وحيد يُمنَح له عند تصنيعه؛ يُسمَّى عنوان MAC، ويُمكّن من تعريفه ضمن الشّبكة. تسمح عنونة العتاد عن طريق عناوين MAC بالإشارة إلى الجهاز الطّرفيّ بقيمة وحيدة لا تتغيّر حتّى ولو استخدمت البرامج اسمًا آخر لتعريف الجهاز أثناء عملها. يعمل بروتوكول التّحكّم في الوصول إلى الوسائط ضمن طبقة الوصلة، وربّما يكون البروتوكول الوحيد من هذا المستوى الّذي ستجد الفرصة للتّعامل معه دوريًّا. 2- بروتوكول الإنترنت Internet protocol, IPوهو أحد البروتوكولات الأساسيّة الّتي تعمل عليها شبكة الإنترنت. يعمل بروتوكول الإنترنت مع عناوين IP، وهي فريدة في كلّ شبكة، ممّا يسمح للأجهزة بالتّواصل في ما بينها عبر الشّبكة. يُنفَّذ ابروتكول الإنترنت على مستوى طبقة التّوصيل ضمن نموذج TCP/IP. يجب عند ربط الشّبكات في ما بينها، توجيه البيانات عند عبورها حدود الشّبكة. يفترض ابروتكول الإنترنت أنّ الشّبكة غير موثوقة؛ ووجود مسارات متعدّدة يُمكن التّغيير ديناميكيًّا بينها للوصول إلى الوجهة. يُنفَّذ ابرتوكول IP عمليًّا بصيّغ عديدة أشهرها اليوم هو الإصدار الرّابع من البروتوكول IPv4، إلاّ أنّ الإصدار السّادس IPv6 يزداد شعبيةً يومًا بعد يوم نظرًا للشّح المتزايد في عناوين الإصدار الرابع المتوفّرة، والتّحسينات المُضافة إلى إمكانيّات البروتوكول. 3- بروتوكول رسائل التّحكّم في الإنترنت Internet control message protocol, ICMPيُستخدَم لإرسال رسائل بين الأجهزة الطّرفيّة للإشعار بحالتها من حيث التّوفّر ووجود أخطاء وطبيعتها. تُستخدَم حزم ICMP في أدوات تشخيص الشّبكة مثل traceroute وping. تُرسَل حزم ICMP عادةً عند ما تواجه حزمة من نوعيّة أخرى مشكلة أثناء النّقل، أيّ أنّ حزم ICMP هي في الواقع آليّة للتّعليق على الاتّصالات عبر الشّبكة. 4- بروتوكول التّحكّم في الإرسال Transmission control protocol, TCPيُؤسّس بروتوكول TCP لاتّصالات موثوقة ويعمل في طبقة النّقل من نموذج TCP/IP. يغلّف بروتوكول TCP البياناتِ ضمن حزم ثمّ يرسلها إلى المستقبِل على الطّرف الآخر من الاتّصال عبر الوسائل المتوفّرة في الطّبقات الأدنى. يتأكّد ابروتوكول TCP في الطّرف المستقبل من عدم وجود أخطاء أثناء النّقل وقد يُعيد طلب بعض الحزم ثمّ يُجمّع البيانات في رسالة واحدة لإرسالها إلى طبقة التّطبيق. يُنشئ بروتوكول TCP، قبل البدء بنقل البيانات، اتّصالًا عبر آليّة تُعرَف بالمصافحة الثّلاثية Three-way handshake. تمكّن هذه الآلية طرفيْ الاتّصال من الإقرار باستلام الطّلبات والاتّفاق على طريقة لضمان موثوقيّة البيانات. بعد اكتمال نقل البيانات يُنهى الاتّصال عبر آليّة مشابهة تُدعَى المصافحة الرّباعيّة. تعتمد الكثير من استخدامات الإنترنت على بروتوكول TCP. نذكر منها الويب WWW، نقل الملفّات عبر FTP، والبريد الإلكتروني. يُمكن القول دون كثير من المجازفة أنّ الإنترنت الّتي نعرفها اليوم لم تكن لتوجد لولا ابروتوكول TCP. 5- بروتوكول مخطَّط بيانات المستخدِم User datagram protocol, UDPيعمل مثل TCP في طبقة النّقل. الفرق الأساسيّ بين الاثنين أنّ UDP ،على العكس من TCP، لا يضمن موثوقيّة النّقل؛ فلا يتأكّد من استلام الطّرف الآخر في الاتّصال للبيانات. قد يبدو من الوهلة الأولى ألّا فائدة من بروتوكول UDP، فهو لا يوفّر آليّة لضمان الموثوقيّة؛ إلّا أنّه مهمّ جدًّا لتأديّة بعض الوظائف. بروتوكول UDP أسرع بكثير من TCP، فهو لا يحتاج للانتظار للتّأكّد من استلام حزمة البيانات، وإعادة إرسالها في حال عدم الاستلام. كما أنّه لا يؤسّس لاتّصال مع وِجهة البيانات بل يكتفي بإلقائها إليه ولا يهتمّ هل يقبلها أم لا. تُفيد سهولة المعاملة الّتي يعرّفها UDP في التّواصل غير المعقَّد مثل طلب موارد على الشّبكة. لا يحتفظ ابروتوكول بمعلومات عن حالة الاتّصال ممّا يجعل منه خيّارًا مناسبًا لإرسال البيانات من جهاز واحد إلى عملاء عديدين في الوقت الحقيقي Real time clients. تجعل هذه الميزات من UDP الخيّار الأمثل لبرامج VoIP (الصّوت عبر ابروتوكول الإنترنت، Voice over IP)، الألعاب، والتّطبيقات الأخرى الّتي لا تحتمل الانتظار. 6- بروتوكول نقل النّصوص التّشعبيّة Hypertext transfer protocol, HTTPيعرَّف هذا البروتوكول على مستوى طبقة التّطبيق، ويكوّن الأساس للتّواصل عبر الويب. يعرّف HTTP دوالّ مختلفة لإخبار النّظام البعيد مالّذي يطلُبه المستخدِم. نذكر منها على سبيل المثال POST، GET و DELETE الّتي تتعامل كلّها مع البيانات المطلوبة ولكنّ بطُرق مختلفة. 7- بروتوكول نقل الملفّات File transfer protocolيعمل على مستوى طبقة التّطبيق، ويوفّر طريقة لنقل ملفّات كاملة من مستضيف إلى آخر. يجب الانتباه إلى أنّ بروتوكول FTP غير آمن ويجب ألّا يُستخدَم في أي شبكة معروضة للعموم إلّا إذا كان على خادوم لا يقبل سوى تنزيل الملفّات. 8- نظام أسماء النّطاقات Domain name system, DNSيُنفَّذ على مستوى طبقة التّطبيق من أجل تعريف آليّة توفّر تسميّات يسهُل تذكّرها للموارد على شبكة الإنترنت. تعطي هذه الآليّة إمكانيّة ربط اسم نطاق بعنوان IP وتسمح بتصفّح موقع عبر إدخال اسمه في المتصفّح. للمزيد راجع مقال مقدّمة إلى مُصطَلحات وعناصر ومفاهيم نظام أسماء النطاقات 9- بروتوكول الصّدفة الآمنة Secure Shell, SSHيعمل بروتوكول SSH على مستوى طبقة التّطبيق ويُستخدَم للتّواصل مع خادوم بعيد بطريقة آمنة تُعمّي Encrypt البيانات. تعتمد تقنيّات عديدة على SSH نظرًا لتوفّره على التّعميّة من طرف إلى طرف End-to-end وشيوع استخدامه. توجد الكثير من البروتوكولات الأخرى المهمّة الّتي لم تُذكَر في هذا الدّرس؛ إلّا أنّ المذكور منها هنا يُعطي نظرة عامّة حول أهم التّقنيّات الّتي تجعل من الإنترنت واقعًا وتسمح للأجهزة بالتّواصل في ما بينها. خاتمةيجب أن تُدرك بانتهاء هذا الدّليل بعض المفهيم الأساسيّة لعمل الشّبكات ممّا يمنحك القدرة على فهم كيف تتواصل مختلف عناصر الشّبكات في ما بينها؛ الأمر الّذي يُساعدك على فهم مقالات أخرى عن الموضوع أو مستندات التّوثيق الموجودة في النّظام. ترجمة بتصرّف لمقال An Introduction to Networking Terminology, Interfaces, and Protocols.
  4. يُعدّ إعداد وربط الشّبكات من الأمور المهمّة لكلّ من يريد إدارة الخواديم. ليس إعداد الشّبكات فقط أساسيًّا لتوفير خدمات على الويب ولكنّه يمنح أيضًا إدراكًا يُساعد في تشخيص المشاكل. يقدّم هذا الدّليل، المكوَّن من جزأيْن، نظرة عامّة على المصطلحات الأكثر شيوعًا في مجال ربط الشّبكات Networking؛ إذ سيتطرّق إلى المفاهيم القاعديّة، والبروتوكولات الأكثر انتشارًا؛ إضافةً إلى مسؤوليّات الطّبقات Layers الموجودة في الشّبكة وخصائصها. رغم أنّ هذا الدّليل مستقلّ عن نظام التّشغيل المُستخدَم، إلّا أنّه سيكون مفيدًا جدًّا عند إضافة خدمات وميزات تستخدم الشّبكة على خادومك. مصطلحات الشّبكاتيجب، قبل الدّخول في عمق الموضوع، تعريفُ بعض المصطلحات الشّائعة الّتي ستقرأها في هذا الدّليل أو أيّ دليل آخر أو توثيق يتعلّق بربط الشّبكات. اتّصال Connection: يُحيل الاتّصال، ضمن مجال الشّبكات، إلى أجزاء مترابطة من المعلومات تُنقَل عبر الشّبكة. يُستنتج من ذلك أنّ الاتّصال عمومًا يُنشَأ قبل الشّروع في نقل البيانات (باتّباع إجراءات مُعرَّفة في ابروتوكول)، ثمّ يُفكَّك - أي الاتّصال - بعد الانتهاء من نقل البيانات. حزمة Packet: وهي الوحدة الصّغرى المنقولة عبر الشّبكة. تغلّف الحزمُ قطعَ البيانات لنقلها من طرف إلى آخر أثناء التّواصل عبر الشّبكة. لدى الحزمة ترويسة Header تحوي معلومات عن الحزمة؛ منها: المصدَر والوِجهة، الختم الزّمنيّ Timestamp، القفزات Hops (أجزاء المسار بين المصدَر والوِجهة)،… إلخ. بينما يحوي الجزء الأكبر من الحزمة البيانات الفعلية المنقولة، ويُسمَّى أحيانًا بالمتن Body أو الحمولة Payload. واجهة شبكة Network interface: يُمكن أن تُحيل واجهة شبكة إلى أيّ نوع من الرّبط بين البرمجيّات Software والعتاد Hardware. على سبيل المثال، إذا كانت لدى الخادوم بطاقتا شبكة، فيُمكن التّحكّم في كلّ واحدة منهما وإعدادها بشكل مستقلّ عن طريق إعداد الواجهة المرتبطة بها.يُمكن أن تكون واجهة الشّبكة مرتبطة بجهاز طرفيّ Device ملموس، أو أن تكون تمثيلًا لواجهة افتراضيّة. الجهاز الطّرفي loopback (يُستخدم للتّخاطب بين البرامج الموجودة على نفس الجهاز) مثال على الواجهات الافتراضيّة. شبكة منطقة محليّة Local area network,LAN: يُطلَق عليها أحيانًا الشّبكة المحليّة. تُشير إلى شبكة - أو جزء من شبكة - لا يُتاح لعموم المستخدمين عبر الإنترنت الوصول إليها. الشّبكة الموجودة في المنزل أو المكتب مثال على الشّبكات المحليّة. شبكة واسعة Wide area network, WAN: وتعني شبكة أكثر اتّساعًا بكثير من شبكة محليّة. يُستخدَم مصطلح الشّبكة الواسعة أحيانًا للدّلالة على شبكة الإنترنت ككلّ، رغم أنّه يُشير في الأصل إلى الشّبكات الواسعة والمتفرّقة عمومًا. إذا وُصِفت واجهة بأنّها متّصلة بشبكة واسعة (WAN) فالمقصود - عادةً - هو أنّها متّصلة بالإنترنت. ابروتوكول Protocol: البروتوكول هو مجموعة من القواعد والمعايير Standards الّتي تعرّف لغةً يُمكن للأجهزة الطّرفيّة استخدامُها للتّخاطب. تُستخدَم ابروتوكولات عديدة في ربط الشّبكات، وتُنفَّذ عادةً على هيئة طبقات مختلفة.أمثلة على ابروتوكولات المستويات الدّنيا: IP، UDP ، TCP وICMP. الأمثلة التّاليّة هي لتطبيقات مبنيّة على طبقات من البروتكولات الأدنى مستوى: HTTP (للوصول إلى صفحات الويب)، TLS/SSL، SSH وFTP. منفذ Port: المنفذ هو عنوان ضمن الجهاز يُمكن ربطه ببرنامج محدّد. المنفذ ليس واجهة ملموسة أو موقِعًا، بل هو طريقة تجعل من الجهاز (الخادوم) قادرًا على التّواصل باستخدام أكثر من تطبيق. جدار ناريّ Firewall: الجدار النّاريّ هو برنامج يُقرّر السّماح لحركة البيانات - القادمة إلى الخادوم أو الخارجة منه - بالمرور أو يمنعها من ذلك. يعمل الجدار النّاري اعتمادًا على قواعد تحدّد نوعيّة البيانات المقبولة والمنافذ المسموح للبيانات بالمرور عبرها. تحظر الجدران النّارية عادةً منافذ الخادوم غير المستخدمة من طرف أيّ تطبيق. ترجمة عناوين الشّبكة Network address translation, NAT: وهي طريقة لإرسال الطّلبات القادمة إلى خادوم توجيه Routing إلى الأجهزة الطّرفيّة المُناسبة أو إلى الخواديم داخل الشّبكة المحليّة الّتي لديها معلومات عن وِجهة الطّلبات. تُستخدم ترجمة عناوين الشّبكة في الشّبكات المحليّة لتوجيه طلبات قادمة على نفس عنوان IP إلى الخواديم الخلفيّة المناسبة. الشّبكات الخاصّة الافتراضيّة Virtual private network, VPN: الشّبكات الخاصّة الافتراضيّة هي طريقة لتوصيل شبكات محليّة مختلفة عبر الإنترنت، مع الحفاظ على الخصوصيّة. تُستخدم هذه الطّريقة لتوصيل أنظمة متباعدة كما لو كانت في نفس الشّبكة المحليّة، لأسباب أمنيّة غالبًا. يجب أن تكون لديك الآن نبذة عن المفاهيم الأساسيّة في مجال ربط الشّبكات. توجد مصطلحات أخرى عديدة، يُمكن أن تُصادفك، لم تُذكَر في اللّائحة أعلاه. سنشرح مصطلحات أخرى في هذا الدّليل فورَ احتيّاجنا إليها. طبقات الشّبكةتُقدّم الشّبكات غالبًا وفق بنيتها الأفقيّة، بين المستضيفات Hosts؛ إلّا أنّ تنفيذ الشّبكة يتمّ وفقا لطبقات على مستوى حاسوب أو حواسيب عدّة. يعني عملُ الشّبكات على طبقات وجودَ تقنيّات متعدّدة تُبنى كلّ واحدة منها فوق الأخرى من أجل أن يعمل التّواصل بطريقة سلِسة. تُجرِّد Abstract كلُّ طبقة البياناتِ الخامّ القادمة من الطّبقة الأدنى، تجرّدها أكثر وتجعل من التّعامل معها أسهل بالنّسبة للتّطبيقات والمستخدمين. يُساعد تنظيم الشّبكة على طبقات في تسهيل استخدام الطّبقات الدّنيا بطرُق جديدة دون بذل الجهد في تطوير ابروتوكولات وتطبيقات تتعامل مع صيّغ البيانات الموجودة في هذه الطّبقات. تختلف طريقة وصف تخطيط طبقات الشّبكة كثيرًا حسب النموذج Model المستخدَم. لا يتغيّر المسار الّذي تأخذه البيانات في الشّبكة رغم اختلاف النّماذج. تبدأ البيانات رحلَتها، عند إرسالها من الجهاز، من قمّة كومة Stack الطّبقات متّجهة إلى الطّبقات الدّنيا. يحدُث نقل البيانات بين الأجهزة فعليًّا في المستوى الأدنى. تُعيد البيانات بعد النّقل رحلتها عبر طبقات الجهاز المستقبِل ولكن في الاتّجاه المعاكس: من الطبقة الدّنيا إلى القمّة. تُضيف كلّ طبقة غلافًا على حزمة البيانات عندما تصل إليها من الطّبقة الأعلى منها، وهو ما يُساعد الطّبقات المواليّة لها في معرفة ما يتوجّب عليها فعلُه بالبيانات. عند الاستقبال تنزع الطّبقة على الجهاز المستقبِل غلاف الطّبقة المكافئة لها على الجهاز المُرسِل. 1- نموذج OSIنموذج OSI (اختصار ل Open Systems Interconnect: شبكة وصل الأنظمة المفتوحة) هو أحد الطُّرُق الأولى لوصف الطّبقات المختلفة في الشّبكة. يُعرّف نموذج OSI سبعَ طبقات هي: التّطبيق Application: وهي الطّبقة الّتي يتفاعل معها المستخدمون وتطبيقات المستخدمين. يكثُر استخدام مصطلحات مثل توفّر الموارد Availability of resources، شركاء للتّخاطب معهم، مزامنة البيانات Data synchronization لوصف الاتّصال على هذا المستوى. التّقديم Presentation: طبقة التّقديم هي المسؤولة عن تعيين الموارد وتعريف السّيّاق Context. تُستخدم لترجمة بيانات المستويات الأدنى إلى صيغة يُمكن للتّطبيقات التّعامل معها. الجلسة Session: وهي مُداوِل Handler الاتّصال: تُنشئ، تُحافظ على، وتنهي الاتّصال بين المُتخاطبَيْن بطريقة مستمرّة. النّقل Transport: مسؤوليّتها إحالة اتّصال موثوق للطّبقات الموجودة فوقها (التّطبيق، التّقديم، والجلسة). تعني موثوقيّةُ الاتّصال في هذا الإطار القدرةَ على التّحقّق من وصول كلّ جزء من البيانات سليمًا إلى الطّرف الآخر من الاتّصال. يُمكن لهذه الطّبقة إعادة إرسال البيانات المفقودة أو المشوَّهة كما أنّ بإمكانها إبلاغ الأجهزة البعيدة بتسلّم البيانات القادمة منها. الشّبكة Network: تُستخدَم هذه الطّبقة لتوجيه البيانات بين مختلف العُقَد Nodes الموجودة في الشّبكة. تسخدم طبقة الشّبكة عنواين لمعرفة الجهاز الّذي ستُرسَل إليه البيانات. يُمكن لهذه الطّبقة أيضًا تقسيمُ الرّسائل ذات الحجم الكبير إلى قطع أصغر تُجمَّع على الطّرف الآخر من الاتّصال - بعد استلامه لها - لإنشاء الرّسالة الأصليّة. وصلة البيانات Data link: تُنفَّذ هذه الطّبقة بحيث تُنشئ وتُحافظ على وصلات موثوقة بين مختلف العُقد والأجهزة الموجودة في الشّبكة باستخدام اتّصالات ملموسة. الاتّصال الملموس Physical: وهي الطّبقة المسؤولة عن معالجة الأجهزة الطّرفية الفعليّة المُستخدَمة للاتّصال. تستدعِي هذه الطّبقةُ البرنامجَ الّذي يُدير الاتّصالات الملموسة والعتاد (مثل Ethernet). توجد إذن العديد من الطّبقات الّتي يُمكن الحديث عنها انطلاقًا من قربها من العتاد والوظيفة الّتي تقدّمها. 2- نموذج TCP/IPيشيع استخدام تعبير حزمة ابروتوكلات الإنترنت Internet protocol suite للحديث عن هذا النّموذج الأسهل والأكثر تبنيًّا. يُعرِّف نموذجُ TCP/IP أربع طبقات، يتداخل بعضٌ منها مع طبقات نموذج OSI: التّطبيق: وهي الطّبقة المسؤولة - في هذا النّموذج - عن إنشاء وإرسال بيانات المستخدِم بين التّطبيقات. يُمكن أن توجد التّطبيقات على أنظمة متباعدة، ويجب أن تظهر وكأنّها تعمل محلّيًّا لدى المستخدِم.يوصف الاتّصال بأنّه يحدُث بين النّظراء Peers. النّقل: وهي الطّبقة المسؤولة عن الاتّصال بين العمليّات Processes. يستخدِم هذا المستوى من الشّبكة المنافذَ لعنونة مختلف الخدمات. يُمكن لطبقة النّقل إنشاء اتّصالات موثوقة أو غير موثوقة حسب نوعيّة البروتوكول المستخدَم. التّوصيل Internet: مسؤوليّتها نقل البيانات من عقدة على الشّبكة إلى أخرى. تعرف هذه الطّبقة طرفيْ الاتّصال ولكنّها لا تهتمّ بالاتّصال الفعليّ المُستخدَم للانتقال من طرف إلى آخر. تُعرَّف عناوين IP على هذا المستوى بوصفها طريقة للوصول إلى الأنظمة البعيدة. الوصلة Link: تُنفّذ طبقة الوصلة مخطَّط الشّبكة المحليّة الّذي يسمح لطبقة التّوصيل بتقديم واجهة بعناوين. تنشئ هذه الطّبقة الاتّصالات بين العقد المتجاورة بهدف إرسال البيانات بينها نموذج TCP/IP أكثر تجريدًا وسلاسة من سابقه؛ ممّا جعله أكثر سهولةً للتّنفيذ وبالتّالي الطريقة الأكثر انتشارًا لتقسيم الطّبقات في الشّبكات.