المحتوى عن 'بروتوكول'.



مزيد من الخيارات

  • ابحث بالكلمات المفتاحية

    أضف وسومًا وافصل بينها بفواصل ","
  • ابحث باسم الكاتب

نوع المُحتوى


التصنيفات

  • التخطيط وسير العمل
  • التمويل
  • فريق العمل
  • دراسة حالات
  • نصائح وإرشادات
  • التعامل مع العملاء
  • التعهيد الخارجي
  • مقالات عامة
  • التجارة الإلكترونية

التصنيفات

  • PHP
    • Laravel
    • ووردبريس
  • جافاسكريبت
    • Node.js
    • jQuery
    • AngularJS
    • Cordova
  • HTML5
  • CSS
    • Sass
    • إطار عمل Bootstrap
  • SQL
  • سي شارب #C
    • منصة Xamarin
  • بايثون
    • Flask
    • Django
  • لغة روبي
    • إطار العمل Ruby on Rails
  • لغة Go
  • لغة جافا
  • لغة Kotlin
  • برمجة أندرويد
  • لغة Swift
  • لغة R
  • سير العمل
    • Git
  • صناعة الألعاب
    • Unity3D
  • مقالات عامّة

التصنيفات

  • تجربة المستخدم
  • الرسوميات
    • إنكسكيب
    • أدوبي إليستريتور
    • كوريل درو
  • التصميم الجرافيكي
    • أدوبي فوتوشوب
    • أدوبي إن ديزاين
    • جيمب
  • التصميم ثلاثي الأبعاد
    • 3Ds Max
    • Blender
  • مقالات عامّة

التصنيفات

  • خواديم
    • الويب HTTP
    • قواعد البيانات
    • البريد الإلكتروني
    • DNS
    • Samba
  • الحوسبة السّحابية
    • Docker
  • إدارة الإعدادات والنّشر
    • Chef
    • Puppet
    • Ansible
  • لينكس
  • FreeBSD
  • حماية
    • الجدران النارية
    • VPN
    • SSH
  • مقالات عامة

التصنيفات

  • التسويق بالأداء
    • أدوات تحليل الزوار
  • تهيئة محركات البحث SEO
  • الشبكات الاجتماعية
  • التسويق بالبريد الالكتروني
  • التسويق الضمني
  • استسراع النمو
  • المبيعات

التصنيفات

  • إدارة مالية
  • الإنتاجية
  • تجارب
  • مشاريع جانبية
  • التعامل مع العملاء
  • الحفاظ على الصحة
  • التسويق الذاتي
  • مقالات عامة

التصنيفات

  • الإنتاجية وسير العمل
    • مايكروسوفت أوفيس
    • ليبر أوفيس
    • جوجل درايف
    • شيربوينت
    • Evernote
    • Trello
  • تطبيقات الويب
    • ووردبريس
    • ماجنتو
  • أندرويد
  • iOS
  • macOS
  • ويندوز

التصنيفات

  • شهادات سيسكو
    • CCNA
  • شهادات مايكروسوفت
  • شهادات Amazon Web Services
  • شهادات ريدهات
    • RHCSA
  • شهادات CompTIA
  • مقالات عامة

أسئلة وأجوبة

  • الأقسام
    • أسئلة ريادة الأعمال
    • أسئلة العمل الحر
    • أسئلة التسويق والمبيعات
    • أسئلة البرمجة
    • أسئلة التصميم
    • أسئلة DevOps
    • أسئلة البرامج والتطبيقات
    • أسئلة الشهادات المتخصصة

التصنيفات

  • ريادة الأعمال
  • العمل الحر
  • التسويق والمبيعات
  • البرمجة
  • التصميم
  • DevOps

تمّ العثور على 6 نتائج

  1. icnd1/ccent 100-101

    إيثرنت (Ethernet) هو البروتوكول المُختار في الشبكات المحليّة؛ والشبكة المحليّة هي مجموعةٌ من الأجهزة المتصلة داخليًا والمتواجدة في أماكن قريبة من بعضها في منطقة محدودة. هنالك ثلاثة عوامل لتعريف شبكة LAN عن الشبكات واسعة النطاق (WAN)، أولها هو المكان الفيزيائي القريب للأجهزة، وثانيها هو السرعة العالية لنقل البيانات، فهي تتراوح بين 100‎ Mb/s إلى ‎1 Gb/s‎ و ‎10 Gb/s التي نراها في الشبكات المعاصرة؛ وثالثها وأهمها هو أننا لا نحتاج إلى استئجار خط أو الاشتراك عند مزود الخدمة لوصل الأجهزة مع بعضها بعضًا. ويمكن أن تكون شبكة LAN صغيرةً كشبكةٍ في مكتبٍ صغير، أو أن تكون شبكةً في حرمٍ جامعيٍ كبير بعدِّة مبانٍ باتصالاتٍ عبر الألياف الزجاجية بينها. مكونات الشبكة المحليةالمكونات (components) الاعتيادية هي: النهايات الشبكيّة مثل الحواسيب الشخصية، والخواديم، والطرفيات ...إلخ. والأجهزة الشبكية التي توفِّر قابلية الاتصال في الشبكة مثل المبدِّلات (switches)، والموجِّهات (routers) لوصل مختلف الشبكات داخليًّا في نفس الشبكة المحليّة، وفي بعض الأحيان قد نجد الموزِّعات (hubs) لمشاركة البيانات. وتُشكِّل البطاقات الشبكيّة والأكبال جزءًا من الشبكة المحليّة. وبخصوص البروتوكولات، فإن بروتوكول إيثرنت هو البروتوكول الحاكم في الطبقة الثانية، و IP في الطبقة الثالثة، وضمن IP تجد بروتوكول ARP وبرتوكولاتٍ أخرى مثل DHCP لأتمتة عملية حجز وإسناد عناوين IP. الشبكة المحليّة هي البيئة التقليدية لكي يتشارك المُستخدمون المواردَ على شكل بيانات، وتطبيقات، ووظائفٍ أخرى؛ أجهزة الدخل والخرج مثل الكاميرات والطابعات موجودةٌ أيضًا؛ وأحد أهم الوظائف للشبكة المحليّة المعاصرة هي توفير قدرة الاتصال إلى الشبكات الأخرى، وذلك عبر البوابات الافتراضية (default gateways) وخلال الموجِّهات وأجهزة WAN الطرفية (WAN edge devices). حجم الشبكة المحليةكما ذكرنا سابقًا، يتراوح حجم الشبكة المحليّة بين المكاتب الصغيرة التي فيها عدِّة أجهزة متصلة بالإنترنت، وحرمٌ كبيرٌ فيها عدِّة مبانٍ بآلاف المستخدمين؛ ويمكن في أيامنا هذه اعتبار أن العاملين عن بُعد جزء من الشبكات المحلية عبر استخدام تقنية VPN ‏(اختصار للعبارة virtual private network)، فالهدف الرئيسي من تقنية VPN هو الوصول إلى شبكةٍ محليةٍ ما؛ وعندها ستكون طريقةُ تعامل المستخدم البعيد مع الشبكة المحلية كما لو أنه كان متصلًا محليًا بها. تطور بروتوكول إيثرنتأُنشِئ بروتوكول الشبكة المحلية «إيثرنت» في السبعينيات من قِبل DEC و Intel و Xerox؛ في الواقع، كان اسمه «DIX Ethernet»، ثم تحول اسمه إلى «thick Ethernet» بسبب استخدام الأكبال المحورية؛ وفي منتصف الثمانينيات، تمت ترقيته لدعم المزيد من الإمكانيات والسرعات، وسُمِّي وقتها «Ethernet 2»، وفي نفس الوقت تقريبًا، كانت منظمة IEEE تُنشِئ معايير لشبكاتٍ شبيهةٍ بإيثرنت، التي كان يُطلَق عليها اسم «802.3». وشاهدنا عبر السنوات، كيف أن بروتوكول إيثرنت تطوَّر إلى ‎10 Mb/s و ‎100 Mb/s ومن ثم إلى ‎1 Gb/s وحاليًا ‎10 Gb/s على شكل معيار IEEE ذي الاسم «802.3AE». معايير LAN القياسية: معيار IEEE 802.3إذا نظرنا إلى إيثرنت من وجهة نظر نموذج OSI، فسنرى أنه يرتبط بطبقة وصل البيانات (data link layer) لكنه يحتوي بعض المواصفات (specifications) في الطبقة الفيزيائية؛ إذا نظرة إلى البروتوكولات الأخرى، مثل IEEE 802.3U، الذي هو «Fast Ethernet»، أو ‎.3Z الذي هو «‎1 Gb Ethernet»، و 3AB الذي هو «‎10 Gb Ethernet»، فسنلاحظ أنَّ المواصفات في الطبقة الفيزيائية موجودةٌ فيه، وهنالك إشارات إلى تقنيات الألياف الضوئية وواصلاتها لتوفير سرعات عالية. هذا البروتوكول مُقسَّم إلى طبقتين فرعيتين، طبقة التحكم بوصول الوسائط (media access control sublayer) التي تتعامل مع الوصول إلى الوسائط وتعريف عناوين MAC كطريقة لتمييز كل الأجهزة في شبكة إيثرنت؛ وطبقة التحكم بالوصل المنطقي (logical link control sublayer) التي تتعامل مع التواصل مع الطبقات العليا؛ حيث ستُشير -على سبيل المثال- إلى عنوان IP في الطبقات العليا باستخدام الحقول في «ترويسة الإطار» (frame header). CSNA/CDأصبحنا نعلم أنَّ إيثرنت هو بروتوكولٌ في الطبقة الثانية، الذي يوفر عنونة MAC بالإضافة إلى طريقة وصول (access method)؛ تُسمى طريقة الوصول بالاسم CSNA/CD (اختصار للعبارة carrier sense multiple access collision detection) وهي آلية تسمح بإرسال الإشارات في نفس الوقت دون إعطاء أولوية لأي إشارة، حيث يملك الجميع وصولًا متساويًا إلى «قناة» (channel)، وهذه هو قسم الوصول المتعدد في هذا البروتوكول. هنالك احتمالٌ كبيرٌ أن جهازين سيحاولان نقل البيانات في نفس الوقت، مما يؤدي إلى حدوث تصادم (collision)؛ لكن في تقنية إيثرنت، يمكن لجميع الأجهزة «تحسس» (sense) القناة وتحديد فيما إذا كانت هنالك إشارات من مُرسِلين آخرين، وهذا هو قسم «تحسس الناقل» (carrier sense) من البروتوكول؛ ويُسمَح للأجهزة بتحسس القناة وكشف التصادمات، وهذا هو قسم «كشف التصادمات» (collision detection) من البروتوكول. حسنًا، كيف يعمل إذًا؟ عندما يحدث تصادم بين الإطارات، فإنها «ترتدد» وتُجدّوَل إعادة إرسالها بناءً على مؤقِّت عشوائي، الذي سيكون مختلفًا في كل جهاز؛ وهذا يزيد من احتمال محاولة الأجهزة إعادة الإرسال في نفس الوقت مرةً أخرى... لكن يجب أن تكون لدينا بيئةٌ بأداءٍ جيد على المدى الطويل. قد تتجه بعض الأمور نحو الأسوأ، ويحصل ذلك عادةً إن كان تصميم الشبكة سيئًا، فعلى سبيل المثال، يكون مجالُ التصادمات كبيرًا مع عددٍ كبيرٍ من الأجهزة التي تتشارك نفس القناة، مما يزيد من احتمالية إرسال الأجهزة في نفس الوقت، مما يزيد من التصادمات، الذي بدوره يقلل من أداء الشبكة؛ وهنالك مشاكلٌ أخرى متعلقةٌ بأعطال العتاد، التي تسبب إرسال إطارات تحتوي على أخطاء أو إطارات غير مفهومة إلى الشبكة، مما يسبب تضاربًا مع بقية الأجهزة ويسبب أخطاءً في الشبكة. بنية إطارات إيثرنتوظيفةٌ مهمةٌ أخرى من وظائف أي بروتوكول في الطبقة الثانية هي «تأطير» البيانات (framing). الإطار هو الحاوية التي ستحمل البتات التي يجب نقلها عبر الشبكة، ويتضمّن حقولًا ستجعل تلك البتات ذاتُ معنى؛ يبيّن الرسم التوضيحي الآتي صيغة الإطار في «Ethernet 2» وفي معيار «IEEE 802.3»؛ حيث يحتوي كلاهما سلسلة بتات تسمى «permeable» التي تستعمل لمزامنة جهازين متصلين؛ وسلسلة التحقق من الإطار، للتأكد من سلامة البيانات التي فيه؛ وعناوين الوجهة والمصدر، التي هي عناوين MAC. الفرق بينهما واضح، يبدأ إطار 802.3 بمُحدِّد الإطار (frame delimiter) الذي يُعلِم الجهاز المُستقبِل أنَّه سيبدأ نقل الإطار الفعلي؛ وانظر أيضًا إلى حقل «النوع» (type) في Ethernet 2، الذي يُشير إلى بروتوكولات الطبقة العليا، وستُستخدم نفس البتات كحقل الطول (length field) في 802.3 الذي يُمثِّل طول حقل البيانات. يحتوي حقل البيانات على ترويسة802.2 الذي هو تطبيقٌ لطبقة التحكم بالوصل المنطقي؛ يمكنك العثور على معلومات بروتوكول الطبقة العليا في هذه الترويسة. التواصل ضمن الشبكة المحليةمفهوم آخر مهم في اتصالات إيثرنت و LAN هو مجال الإرسال (scope of transmission). تكون هنالك وجهةٌ واحدةٌ في نقل unicast، أي سيكون هنالك عنوان وجهة يُمثِّل جهازًا واحدًا. هذه هي طريقة آلية العمل في الشبكات المحلية، ويكون عنوان MAC هو المُعرِّف الفريد الذي يُستخدَم لإرسال إطارات unicast. ستحتاج بعض البروتوكولات والتطبيقات إلى إرسال الإطارات إلى جميع الأجهزة في الشبكة المحليّة، وهذا هو سبب استخدام «الإذاعة» (broadcast)، حيث تمثِّل الإذاعة وجهةً تُعالَج من جميع الأجهزة؛ وهذه ملائم لبعض البروتوكولات مثل ARP، الذي يطلب ترجمة عنوان IP إلى عنوان MAC دون معرفة مالك عنوان IP، حيث يُذاع الطلب إلى كل الأجهزة، وسيُجيب الجهاز المطلوب. أخيرًا وليس آخرًا، multicast هو حلٌ وسطٌ بين unicast و broadcast؛ حيث لا يمثِّل وجهةً واحدةً ولا جميع الأجهزة؛ بل يُمثِّل مجموعةً من الأجهزة، ثم ستُعدّ رزمةٌ لإرسالها إلى تلك المجموعة؛ ويمكن للأجهزة أن تنضم أو تخرج من المجموعات ديناميكيًا؛ مثالٌ عن تطبيقات تستخدم multicast: المؤتمرات المرئية، والتعلم الإلكتروني، وأشكالٌ أخرى من الوسائط المتعدِّدة. مكونات عناوين MAC وظيفةٌ أخرى من وظائف أي بروتوكول في الطبقة الثانية هي «العنونة» (addressing)، وليس بروتوكول إيثرنت استثناءً، وعنوان «media access control» هو مُعرِّفٌ فريدٌ يُستخدَم من كل الأجهزة على شبكة إيثرنت. ترتبط عناوين MAC عادةً بمصنِّع العتاد؛ في الحقيقة، هنالك مجالات مُعرَّفة من قِبل IEEE لمختلف المصنِّعين لضمان أنَّ العناوين فريدةٌ؛ يَسمح بعض المصنِّعين بتعديل عناوين MAC لأغراضٍ معيّنة. يتألف عنوان MAC من مكوِّنَين رئيسيَين هما: 24-بت مُعرِّف تنظيمي فريد (Organizational Unique Identifier أو اختصارًا OUI)، الذي يُحدِّد مُصنِّع العتاد (الذي يمكن أن يكون بطاقةً شبكيّةً، أو منافذ موجِّه [router ports] ...إلخ.) وضمن تلك 24-بت هنالك 2 بت لهما معنىً خاص، «بت الإذاعة» (broadcast bit) الذي يُستخدَم عادةً للإشارة أنَّ هذا العنوان هو عنوان broadcast أو multicast؛ وبت «عنوانٌ محليُّ الإدارةِ» (locally administered address) الذي يُستعمَل عادةً عندما يُغيَّر عنوان MAC. القسم الثاني من عنوان MAC بطول 24-بت، وهو مُسنَد من الشركة المصنِّعة، ويجب أن يكون فريدًا. ترجمة -وبتصرّف- للمقال Understanding Ethernet.
  2. يوفر لك بروتوكول نقل الملفات (File Transfer Protocol) أو باختصار FTP طريقة سريعة وسهلة لنفل الملفات من وإلى موقع ووردبريس الخاص بك. في الأيام الأولى لتطوير الويب، كان FTP هو الوسيلة الوحيدة للتفاعل مع الواجهة الخلفية لموقعك ولرفع المحتويات، لكن سهلت ووردبريس في الوقت الحالي عملية تهيئة وإعداد الموقع عن طريق السماح لك برفع المحتويات مباشرة من متصفحك وبذلك قلة أهمية استخدام FTP. لكن في مثل هذه الحالة، هل يجب التّخلي عنه كاملّا؟ لا ليس بعد. لايزال هنالك أسباب عديدة ستجعلك تحتاج إلى استخدام FTP (أو File Transfer Protocol Secure, FTPS بروتوكول الآمن لنقل الملفات) سواء كنت بحاجة إلى رفع ملفات ضخمة إلى موقعك أو حتى حذفها أو تغيير صلاحيات الملفات والمجلدات، فستساعدك مهارة استخدام FTP بشكل صحيح كثيرا. في هذا المقال، سأريك كيف تستخدم FTP مع ووردبريس وكيف تحل بعض المشاكل الشائعة التي قد تعترضك. إعداد واستخدام FTP لنقل الملفات من وإلى خادومك ستحتاج أولا إلى تحميل وتثبيت عميل FTP على جهازك، يتوفر العديد من عملاء FTP، ولا يوجد خيار صحيح بين هذه الاختيارات، فاختيارك يعتمد على نظام تشغيلك وأي واحد ترتاح باستخدامه. هذه قائمة بجميع عملاء FTP التي يمكنك تحميلها واستخدامها اليوم: FileZilla مجاني ومفتوح المصدر ويعمل على جميع المنصات، ويعتبر هذا العميل الحل الأشهر. SmartFTP يعمل فقط على نظام ويندوز، ويبلغ سعره 60 دولار أو 120 دولار بالاعتماد على النسخة التي تريدها كما توجد نسخة تجريبية مجانية منه. WinSCP برنامج مجاني ومفتوح المصدر لكن يعمل على أنظمة ويندوز فقط. Macfusion عميل FTP مجاني لمستخدمي أنظمة Mac OS X، ويتطلب برنامج MacFUSE من جوجل ليعمل. LFTP عميل FTP يعمل على أنظمة لينكس وهو مجاني. FireFTP مجاني لكنه يعمل فقط مع فيرفوكس، لذلك فهو يعمل على أي نظام. Cyberduck متوفر لأنظمة ويندوز وماك وهو مجاني ومفتوح المصدر. Core FTP عميل FTP مجاني لكنه يعمل على أنظمة ويندوز فقط، توجد نسخة مدفوعة منه للمزيد من المميزات. Free FTP يبدو أنك افترضت أن هذا العميل مجاني انطلاقا من اسمه، وهذا الافتراض صحيح لكنه يعمل على أنظمة ويندوز فقط. Transmit متوفر لأنظمة Mac OS X وعلى الرغم من وجود نسخة مجانية تجريبية، لكن النسخة الكاملة يبلغ سعرها 34$. هنالك عملاء آخرون، لكن حذفت الكثير منهم من القائمة بسبب توقف دعمها و تحديثها، على الرغم من أن العديد منها لايزال صالح للاستخدام ويمكنك استخدامهم على مسؤوليتك. عندما تختار وتثبت عميلك، سيكون الوقت مناسب لإدخال معلومات الخادوم. لا يهم نوع FTP، هذه المعلومات التي ستحتاجها: عنوان IP: عنوان IP المخصص لك أو إذا لم تملك واحد، فسيكون عنوان IP موقعك. اسم المستخدم وكلمة المرور لحساب FTP: إذا لم يكن لديك فستحتاج إلى إعداد واحد. يوجد فرق بسيط بين شركات الاستضافة فإذا لم تساعدك هذه الخطوات على الوصول إلى المعلومات المطلوبة فأفضل حل هو أن تسأل مستضيفك والذي يمكنه إعطاؤك أفضل إجابة. في cPanel يمكنك إيجاد عنوان IP الخاص بك بعد تسجيل دخولك، ستجده في الجانب الأيسر. يجب أن تعثر على عنوان IP الخاص بك هنا والذي سيساعدك على تسجيل دخولك إلى خادومك من عميل FTP الذي اخترته، لكن قبل أن تسجل دخولك، ستحتاج إلى التأكد من امتلاكك تفاصيل حساب FTP. في هذه الصفحة، اضغط على: Files > FTP Accounts وتحقق ما إذا كان لديك بالفعل اسم مستخدم موجود في قائمة FTP Accounts. إذا كان لديك واحد، ستكون قد حصلت على كل ما تحتاجه لبدء نقل الملفات، وخلافا لذلك ستحتاج إلى إنشاء حساب جديد مع النموذج الموجود في أعلى الصفحة. أدخل اسم المستخدم وكلمة المرور الصحيحة وتأكد من اختيارك المجلد الصحيح، فإذا كان هدفك نقل الملفات لتثبيت ووردبريس على سبيل المثال، فستحتاج إلى اختيار مجلد الجذر (root) لموقعك. أما لو كنت تريد إضافة ملفات إلى مجلد معين، فيمكنك اختيار ذلك من هنا، كما أنه يمكنك تحديد ذلك المجلد عند وصولك إلى خادومك عبر عميل FTP لذا فإن حقل Directory ليس ضروريا. كما يمكنك اختيار زر Unlimited تحت Quota لتضمن أنه يمكنك نقل جميع الملفات التي تحتاجها دون مقاطعتك، لكن ضع في اعتبارك أن عدد الملفات التي ستنقلها سيتم احتسابها وستستهلك من سعة نطاق الشبكة (bandwidth) المتوفر والذي هو جزء من خطة استضافتك، فإذا بلغت حد سعة نطاق الشبكة، سيقوم مستضيفك بإغلاق موقعك حتى تقوم بالترقية أو حتى يأتي موعد الدفع مرة أخرى. يمكنك التأكد من هذا الحد في cPanel على الجانب الأيسر من الصفحة الرئيسية في المكان الذي وجدت فيه عنوان IP، ستجده تحت Monthly Bandwidth Transfer ويمكنك رؤية الكمية التي استخدمتها من ذلك الحد. إذا كان لديك حد صارم لا تريد تجاوزه، فيمكنك إدخال الحد الأعلى الذي تريده بالميغابايت تحت Quota عند إنشائك لحساب FTP. لا تنس أن تضغط على رز Create FTP Account في أسفل النموذج لضمان إنشاء حسابك، عندما تنتهي من هذا، ستكون مستعد لاستخدام عميل FTP الخاص بك. عندما تفتح FileZilla على سبيل المثال، يمكنك اختيار خيار تسريع الاتصال لخادومك من دون إدخال أية إعدادات مخصصة. أدخل المعلومات التالية والتي جمعتَها: Host: عنوان IP الخاص بموقعك أو عنوان IP المخصص. Username: الاسم الذي أدخلته لحساب FTP الجديد، تأكد من إدخالك اسم المستخدم الكامل الموجود في cPanel. فعلى سبيل المثال، أدخل username@your-site.com إذا كان هذا هو الموجود أو ستحصل على رسالة خطأ. Password: كلمة المرور التي أدخلتها عند إنشاءك لحساب FTP. Port: في العادة يمكنك استخدام الافتراضي والذي هو 21، وإذا حصلت على رسالة خطأ، اسأل مستضيفك عن المنفذ الذي يجب عليك استخدامه. عندما تُدْخِل هذه القيم، انقر على زر Quick Connect للاتصال، وإذا نجحت في ذلك سترى رسالة في المساحة الموجودة أسفل نموذج تسجيل الدخول. إذا كان لديك شهادة SSL مثبتة على خادومك، فقد ترى نافذة جديدة تظهر لك فجأة وتسألك قبول هذه الشهادة. أنظر إلى المعلومات التي ظهرت لك، إذا تم عرض شهادة SSL، فهذا معناها أن المعلومات صحيحة وأنك وثّقت شهادتك، لذلك استمر عن طريق النقر على OK. يمكنك اختيار إضافة إعدادات متخصصة لاتصالك، خاصة إذا رأيت رسائل خطأ تظهر عندما تحاول الاتصال، ولفعل ذلك، اذهب إلى: File > Site Manager وانقر على زر New Site في أسفل رسالة الخطأ التي ظهرت لك. من هذه النافذة، يمكنك اختيار الاتصال بطرق متعددة في حالة كنت لا تملك شهادة SSL مثبتة على خادومك، كل هذه الخيارات ستجدها تحت Encryption في صندوق النافذة، كما توجد خيارات أخرى عديدة هنا والتي يمكن أن تفيدك حسب حالتك. قد يكون من المهم أيضا أن تعرف أنه إذا واجهت مشاكل في الاتصال قد يكون السبب هو شهادة SSL، فلقد قام FileZilla بتغيير إعداداته الافتراضية إلى FTPS بدلا من FTP، وهذا يعني أن FileZilla أصبح يفترض أنك تملك شهادة SSL مثبتة على خادومك وأنك تحاول الاتصال به، فإذا لم تملك شهادة SSL مثبتة أو أنك لم تكونها بشكل صحيح، فستظهر رسالة خطأ. لإصلاح هذه المشكلة أو التأكد منها، حاول الاتصال باستخدام خيار: (Site Manager > Encryption > Only use plain FTP (insecure فإذا تمكنت من الاتصال بنجاح، فهذا يعني أنه لديك مشكلة في قبول شهادة SSL أو أنك لا تملك واحدة مثبتة. بعد أن تنهي إدخالك لجميع الإعدادات التي ترغب بها، اضغط على زر Connect في أسفل النافذة التي ظهرت لك لبدء الاتصال. كيف تنقل الملفات الآن لقد نجحت بالاتصال، وأنت مستعد الآن لنقل ملفاتك. ستجد الكثير من المناطق في FileZilla، على اليسار ستجد قسم Local site (موقعك المحلي) وعلى اليمين ستجد قسم Remote Site. الصندوق الأول تحت منطقة الرسائل سيظهر لك جميع المجلدات الموجودة على حاسوبك، عندما تضغط عليهم، سيظهر لك جميع الملفات والمجلدات الموجودة حاليا في صندوق في الأسفل. ونفس الشيء بالنسبة للصندوق على اليمين، تحت منطقة الرسائل، فهي تُظهر لك المجلدات الرئيسية الموجودة على خادومك، عندما تضغط عليهم، ستظهر لك الملفات والمجلدات الموجودة فيه في الصندوق في الأسفل، وإذا لم يحدث هذا، فربما لديك مشكلة في الإتصال. في أسفل النافذة ستجد طابور النقل مع حالة التحويلات المعلقة. كل ما تحتاجه لتبدأ نقل الملفات والمجلدات هو اختيار ملفاتك ومجلداتك المطلوبة من الجانب الأيسر من عميلك، ثم الضغط عليهم وسحبها وإسقاطها في قسم remote site على اليمين. يمكنك نقر وسحب وإسقاط الملفات والمجلدات من كل من الصندوقين العلوي أو السفلي على يسار أو يمين الجهة الأخرى، هذا معناه أنه يمكنك رفع الملفات إلى خادومك عن طريق إسقاط ملفاتك إلى جانب remote site على اليمين أو تنزيل الملفات إلى حاسوبك من خادومك بإسقاط الملفات إلى اليسار. في أسفل النافذة ستجد أيضا عددا من علامات التبويب: Queued files و Failed transfers و Successful transfers. علامة التبويب الأولى هي الافتراضية وتظهر لك جميع العمليات الحالية، أما علامة التبويب الأخيرة فتظهر لك جميع الملفات والمجلدات التي تم نقلها بنجاح وأما Failed transfers -كما خمّنت- فستظهر لك جميع الملفات والمجلدات التي لم يتم نقلها. إذا وجدت عددا بعد عنوان Failed transfers فهذا يعني أنه يوجد ذلك العدد من الملفات التي لم يتم نقلها، يمكنك إرجاعها مرة أخرى إلى العمليات الحالية عن طريق تحديد علامة التبويب ومن ثم النقر بالزر الأيمن على اسم الملف لنظام ويندوز أو عن طريق النقر والضغط على مفتاح الأمر (command key) بالنسبة لأنظمة Mac OS X ومن ثم اختيار خيار Reset and requeue all. إذا تم نقل ملفاتك بنجاح، فلقد انتهينا، فالملفات والمجلدات التي حددتها موجودة الآن على خادومك. رفع ملفات الوسائط المتعددة باستخدام FTP يبدو أن نقل ملفاتك ومجلداتك سهل للغاية، لكن سيكون الأمر أصعب قليلا إذا حاولت نقل الملفات إلى مجلد wp-content/uploads/، ستلاحظ أن أي ملف ستقوم بنقله عن طريق FTP لن يظهر في مجلد ملفات الوسائط المتعددة (Media files). للأسف، عندما تنقل الملفات بهذه الطريقة، لن تُسجل مكتبة الوسائط المتعددة ملفاتك، فووردبريس لن يتعرّف على الملفات التي لم يتم تحميلها من لوحة التحكم عن طريق مكتبة الوسائط المتعددة أو عن طريق زر Add Media عند إنشائك مشاركة جديدة أو صفحة. لحسن الحظ، توجد طريقة سهلة وسريعة لحل هذا، وذلك عن طريق استخدام ملحق Add from Server، فهذا الملحق يتم تحديثه بشكل منتظم. بمجرد أن ترفع ملفاتك ، انقر على ذلك المجلد من القائمة للوصول إلى قائمة الملفات المرفوعة غير المسجلة. يسمح لك هذا الملحق أيضا بتسجيل الملفات التي رفعتها على أي مجلد موجود في ملف تثبيت ووردبريس. يمكنك أيضا النقر على أحد روابط Quick Jump الموجودة في أعلى الصفحة للوصول إلى الملفات الشائعة بشكل أسرع. بمجرد أن تجد ملفاتك، قم بالضغط على مربعات هذه الملفات لتسجيلها أو اضغط على المربع بجانب File لتحديد جميع الملفات، ثم انقر على زر Import في أسفل القائمة. قد يستغرق معالجة الصور أو الملفات بعض الوقت خاصة إذا حدّدت الكثير من الصور لذلك لا تستعجل وخذ استراحة قصيرة ولا تعد حتى تجد رسالة نجاح العملية. يمكنك الآن التحقق من مكتبة الوسائط المتعددة، ستجد أن الصور موجودة وجاهزة للاستخدام. إبقاء اتصالك آمنا سأكون مقصرا معك إذا لم أذكر لك كيف تبقي خادومك وموقعك آمنين عند استخدام FTP لأن هنالك بعض المخاطر والتي لحسن الحظ يمكنك تجنبها. إذا لم تكن تملك شهادة SSL مثبتة على خادومك أي أنك تستخدم FTP بدلا من FTPS، فهذا معناه أنك معرض لاعتراض اتصالك من قبل القراصنة، فجميع الملفات والبيانات المخزنة على موقعك وخادومك بما في ذلك أسماء المستخدمين وكلمات المرور وعناوين البريد الإلكتروني وغيرها من المعلومات الشخصية معرضة أن يتم سرقتها. إذا كنت تستخدم استضافة مشتركة، فسيكون موقعك محمي بما أن المستضيف سيكون مسؤولًا على أمن موقعك، لكن إذا كنت تستخدم VPS أو خادوم مخصص (dedicated server)، فستكون أنت المسؤول على أمان موقعك وخادومك، فإذا كنت تملك خادومك الخاص ولم تقم بتثبيت شهادة SSL، فسيكون موقعك وخادومك معرضين للخطر في كل مرة تستخدم فيها FTP. على الرغم من أن امتلاك شهادة SSL ليس الإجراء الأمني الوحيد الذي يجب أن تتخذه، إلا أنه بالتأكيد خطوة مهمة. من المهم أيضا حذف حساب FTP الذي أنشأته عندما تنهي رفع أو تنزيل ملفاتك لأن هذه المعلومات ستكون مهددة، فقد يتمكن قراصنة الانترنت من الحصول على هذه المعلومات في أوقات فراغهم. بعض شركات الاستضافة تحذف حسابات FTP بعد مدة معينة من الزمن، لكن إذا لم تكن هذه الخدمة متوفرة لديك فلا تنس أن تحذفها بشكل يدوي عندما تنتهي من العمل. ولفعل ذلك اذهب إلى: Files > FTP Accounts ثم انقر على رابط Delete المجاور لمعلومات تسجيل الدخول. بعد ذلك، إما أن تنقر على زر Delete Account لحذف حساب FTP الخاص بك مع إبقاء الملفات في هذا المجلد أو انقر على زر Delete Account and Files لحذف الحساب مع الملفات. خذ بعين الاعتبار أنه إذا قمت بحذف حساب FTP المرتبط بمجلدك الرئيسي مثل المجلد الجذر لموقعك، فسيتم حذف جميع الملفات في ذلك المجلد إذا اخترت خيار حذف حسابك وملفاتك، وهذا معناه أنه في هذه الحالة ستُحذف جميع ملفات موقعك، لذلك إذا كانت لديك أية شكوك فانقر على زر Delete Account. عندما تريد نقل بعض الملفات مرة أخرى، أنشئ حساب جديد، ثم احذفه مرة أخرى عندما تنتهي. الخاتمة الآن، أنت جاهز لاستخدام FTP و FTPS لنقل الملفات إلى موقع ووردبريس الخاص بك وسيكون الأمر سهل للغاية، كما يمكنك أيضا تسجيل ملفات المرفوعة والتي ستكون في العادة غير مرفقة في مكتبة الوسائط المتعددة. هل تنقل الملفات عبر FTP أو FTPS كثيرا؟ ما طريقتك أو عميلك المفضل؟ هل تستخدم أي ملحقات أو عملاء FTP أخرى لمساعدتك على نقل الملفات؟ شاركنا تجربتك في التعليقات في الأسفل. ترجمة -وبتصرف- للمقال: How to Use FTP Properly with WordPress لصاحبه Jenni McKinnon.
  3. إن بروتوكول NTP هو بروتوكول TCP/IP، يُستخدَم لمزامنة الوقت عبر الشبكة؛ بكلماتٍ بسيطة: يطلب العميل الوقت الحالي من الخادوم ثم يستخدمه لمزامنة ساعته الداخلية. هنالك الكثير من التعقيدات خلف هذا التفسير البسيط، فهنالك درجات من خواديم NTP؛ فالدرجة الأولى من خواديم NTP تتصل بساعات ذريّة (atomic clock)، والدرجة الثانية والثالثة من الخواديم تُوزِّع الحِمل عبر الإنترنت؛ وحتى برمجية العميل هي برمجية معقدة أكثر بكثير مما تظن، فهنالك عامل لأخذ التأخير في الاتصالات بعين الاعتبار، وتعديل الوقت في طريقة لا تُفسِد وظيفة جميع العمليات التي تعمل في الخادوم؛ ولحسن الحظ أنَّ كل هذا التعقيد مخفيٌ عنك! تستخدم أوبنتو ntpdate، و ntpd. الأداة ntpdateيأتي أوبنتو افتراضيًا مع الأداة ntpdate، وستعمل عند الإقلاع لتضبط وقتك وفقًا لخادوم NTP الخاص بأوبنتو: ntpdate -s ntp.ubuntu.comعفريت ntpdيحسب عفريت ntp الانزياح في ساعة وقت النظام، ويعدِّلها باستمرار، لذلك لن يكون هنالك تصحيحات كبيرة ستؤدي إلى اختلال في السجلات (logs) على سبيل المثال. لكن سيكون ثمن ذلك هو القليل من طاقة المعالجة والذاكرة، ولكن هذا لا يُذكَر بالنسبة إلى الخواديم الحديثة. التثبيتلتثبيت ntpd، أدخل الأمر الآتي إلى الطرفية: sudo apt-get install ntpالضبطعدِّل الملف ‎ /etc/ntp.confلإضافة أو إزالة الأسطر التي تحتوي على عناوين الخواديم، تُضبَط هذه الخواديم افتراضيًا: # Use servers from the NTP Pool Project. Approved by Ubuntu Technical Board # on 2011-02-08 (LP: #104525). See http://www.pool.ntp.org/join.html for # more information. server 0.ubuntu.pool.ntp.org server 1.ubuntu.pool.ntp.org server 2.ubuntu.pool.ntp.org server 3.ubuntu.pool.ntp.orgبعد تعديل ملف الضبط، عليك إعادة تحميل ntpd: sudo service ntp reloadمشاهدة الحالةاستخدم الأمر ntpq لرؤية المزيد من المعلومات: sudo ntpq -p remote refid st t when poll reach delay offset jitter ================================================================================ +stratum2-2.NTP. 129.70.130.70 2 u 5 64 377 68.461 -44.274 110.334 +ntp2.m-online.n 212.18.1.106 2 u 5 64 377 54.629 -27.318 78.882 *145.253.66.170 .DCFa. 1 u 10 64 377 83.607 -30.159 68.343 +stratum2-3.NTP. 129.70.130.70 2 u 5 64 357 68.795 -68.168 104.612 +europium.canoni 193.79.237.14 2 u 63 64 337 81.534 -67.968 92.792مصادرراجع صفحة الويكي «Ubuntu Time» لمزيد من المعلومات.موقع ntp.org: الموقع الرسمي لمشروع بروتوكول وقت الشبكة.ترجمة -وبتصرف- للمقال Ubuntu Server Guide: Time Synchronisation with NTP.
  4. إن بروتوكول ضبط المضيف ديناميكيًّا (Dynamic Host Configuration Protocol) هو خدمة شبكة تُفعِّل إسناد إعدادات الشبكة إلى الحواسيب المضيفة من خادوم بدلًا من إعداد كل مضيف شبكي يدويًا؛ حيث لا تملك الحواسيب المُعدَّة كعملاءٍ لخدمة DHCP أيّة تحكم بالإعدادات التي تحصل عليها من خادوم DHCP. إن أشهر الإعدادات الموفَّرة من خادوم DHCP إلى عملاء DHCP تتضمن: عنوان IP وقناع الشبكة.عنوان IP للبوابة الافتراضية التي يجب استخدامها.عناوين IP لخواديم DNS التي يجب استعمالها.لكن يمكن أيضًا أن يوفِّر خادوم DHCP خاصيات الضبط الآتية: اسم المضيف.اسم النطاق.خادوم الوقت.خادوم الطباعة.من مزايا استخدام DHCP هو أن أي تغييرٍ في إعدادات الشبكة -على سبيل المثال تغيير عنوان خادوم DNS- سيتم في خادوم DHCP فقط، وسيُعاد ضبط جميع مضيفي الشبكة في المرة القادمة التي سيَطلُبُ فيها عملاء DHCP معلومات الإعدادات من خادوم DHCP؛ ويُسهِّل استعمال خادوم DHCP إضافة حواسيب جديدة إلى الشبكة، فلا حاجة للتحقق من توفر عنوان IP؛ وسيقل أيضًا التضارب في حجز عناوين IP. يمكن أن يُوفِّر خادوم DHCP إعدادات الضبط باستخدام الطرق الآتية: التوزيع اليدوي (Manual allocation) عبر عنوان MACتتضمن هذه الطريقة استخدام DHCP للتعرف على عنوان مميز لعتاد كل كرت شبكة متصل إلى الشبكة، ثم سيوفِّر إعدادات ضبطٍ ثابتةً في كل مرة يتصل فيها عميل DHCP إلى خادوم DHCP باستخدام بطاقة الشبكة المعيّنة مسبقًا؛ وهذا يضمن أن يُسنَد عنوان معيّن إلى بطاقةٍ شبكيّةٍ معيّنة وذلك وفقًا لعنوان MAC. التوزيع الديناميكي (Dynamic allocation)سيُسنِد خادوم DHCP -في هذه الطريقة- عنوان IP من مجموعة من العناوين (تسمى pool، أو في بعض الأحيان range أو scope) لمدة من الزمن (يسمى ذلك بالمصطلح lease) التي تُضبَط في الخادوم، أو حتى يخبر العميل الخادوم أنه لم يعد بحاجةٍ للعنوان بعد الآن؛ وسيحصل العملاء في هذه الطريقة على خصائص الضبط ديناميكيًّا وفق المبدأ «الذي يأتي أولًا، يُخدَّم أولًا»؛ وعندما لا يكون عميل DHCP متواجدًا على الشبكة لفترة محددة، فسينتهي وقت الضبط المخصص له، وسيعود العنوان المسند إليه إلى مجموعة العناوين لاستخدامه من عملاء DHCP الآخرين؛ أي أنَّه في هذه الطريقة، يمكن «تأجير» أو استخدام العنوان لفترة من الزمن؛ وبعد هذه المدة، يجب أن يطلب العميل من الخادوم أن يعيد تأجيره إياه. التوزيع التلقائي (Automatic allocation)سيُسنِد خادوم DHCP -في هذه الطريقة- عنوان IP إسنادًا دائمًا إلى جهاز معين، ويتم اختيار هذه العنوان من مجموعة العناوين المتوفرة؛ يُضبَط عادةً DHCP لكي يُسنِد عنوانًا مؤقتًا إلى الخادوم، لكن يمكن أن يسمح خادوم DHCP بزمن تأجير «لا نهائي». يمكن اعتبار آخر طريقتين «تلقائيتَين»، ﻷنه في كل حالة يُسنِد خادوم DHCP العنوان دون تدخل إضافي مباشر، الفرق الوحيد بينهما هو مدة تأجير عنوان IP؛ بكلماتٍ أخرى، هل ستنتهي صلاحية عنوان العميل بعد فترة من الزمن أم لا. يأتي أوبنتو مع خادوم وعميل DHCP، الخادوم هو dhcpd‏ (dynamic host configuration protocol daemon)، والعميل الذي يأتي مع أوبنتو هو dhclient، ويجب أن يثبَّت على جميع الحواسيب التي تريدها أن تُعَدّ تلقائيًا، كلا البرنامجين سهلُ التثبيت، وسيبدآن تلقائيًا عند إقلاع النظام. التثبيتاكتب الأمر الآتي في مِحَث الطرفية لتثبيت dhcpd: sudo apt-get install isc-dhcp-serverربما تحتاج إلى تغيير الضبط الافتراضي بتعديل ملف ‎/etc/dhcp/dhcpd.conf ليلائم احتياجاتك والضبط الخاص الذي تريده. ربما تحتاج أيضًا إلى تعديل ‎/etc/default/isc-dhcp-server لتحديد البطاقات الشبكية التي يجب أن «يستمع» (listen) إليها عفريت dhcpd. ملاحظة: رسالة عفريت dhcpd تُرسَل إلى syslog، انظر هناك لرسائل التشخيص. الضبطربما سيربكك ظهور رسالة خطأ عند انتهاء التثبيت، لكن الخطوات الآتية ستساعدك في ضبط الخدمة: في الحالات الأكثر شيوعًا، كل ما تريد أن تفعله هو إسناد عناوين IP إسنادًا عشوائيًا، يمكن أن يُفعَل ذلك بالإعدادات الآتية: # minimal sample /etc/dhcp/dhcpd.conf default-lease-time 600; max-lease-time 7200; subnet 192.168.1.0 netmask 255.255.255.0 { range 192.168.1.150 192.168.1.200; option routers 192.168.1.254; option domain-name-servers 192.168.1.1, 192.168.1.2; option domain-name "mydomain.example"; }نتيجة الإعدادات السابقة هي ضبط خادوم DHCP لإعطاء العملاء عناوين IP تتراوح من 192.168.1.150 إلى 192.168.1.200، وسيُأجَّر عنوان IP لمدة 600 ثانية إذا لم يطلب العميل وقتًا محددًا؛ عدا ذلك، فسيكون وقت الإيجار الأقصى للعنوان هو 7200 ثانية؛ و«سينصح» الخادومُ العميلَ أن يستخدم 192.168.1.254 كبوابة افتراضية، و 192.168.1.1 و 192.168.1.2 كخادومَيّ DNS. عليك إعادة تشغيل خدمة dhcpd بعد تعديل ملف الضبط: sudo service isc-dhcp-server restartمصادرتوجد بعض المعلومات المفيدة في صفحة ويكي أوبنتو «dhcp3-server».للمزيد من خيارات ملف ‎/etc/dhcp/dhcpd.conf، راجع صفحة الدليل man dhcpd.conf.مقالة في ISC:‏ «dhcp-server».ترجمة -وبتصرف- للمقال Ubuntu Server Guide: Dynamic Host Configuration Protocol - DHCP. حقوق الصورة البارزة: Designed by Freepik.
  5. إن بروتوكول التحكم في نقل البيانات (Transmission Control Protocol) وبروتوكول الإنترنت (Internet Protocol) المسمى اختصارًا TCP/IP هو معيار يضم مجموعة بروتوكولاتٍ مطورةً في نهاية السبعينات من القرن الماضي من وكالة مشاريع أبحاث الدفاع المتقدمة (Defense Advanced Research Projects Agency‏ [DARPA])، كطرق للتواصل بين مختلف أنواع الحواسيب وشبكات الحواسيب؛ إن بروتوكول TCP/IP هو العصب المحرك للإنترنت، وهذا ما يجعله أشهر مجموعة بروتوكولات شبكيّة على وجه الأرض. TCP/IPالمكونان الرئيسيان من مكونات TCP/IP يتعاملان مع مختلف نواحي شبكة الحاسوب؛ بروتوكول الإنترنت -جزء «IP» من TCP/IP- هو بروتوكول عديم الاتصال (connectionless) يتعامل مع طريقة توجيه (routing) الرزم الشبكية مستخدمًا ما يسمى «IP Datagram» كوحدة رئيسية للمعلومات الشبكية؛ تتكون IP Datagram من ترويسة، يتبعها رسالة. إن بروتوكول التحكم في نقل البيانات هو «TCP» من TCP/IP، ويُمكِّن مضيفي الشبكة من إنشاء اتصالاتٍ يستطيعون استخدامها لتبادل مجاري البيانات (data streams)؛ ويَضمَن أيضًا بروتوكول TCP أن البيانات التي أُرسِلَت بواسطة تلك الاتصالات ستُسَلَّم وتصل إلى مضيف الشبكة المُستقبِل كما أُرسِلَت تمامًا وبنفس الترتيب من المُرسِل. ضبط TCP/IPيتكون ضبط TCP/IP من عدِّة عناصر التي يمكن أن تُغيَّر بتعديل ملفات الإعدادات الملائمة، أو باستخدام حلول مثل خادوم «بروتوكول ضبط المضيف الديناميكي» (Dynamic Host Configuration Protocol‏ [DHCP])، الذي يمكن أن يُضبَط لتوفير إعدادات TCP/IP صالحة لعملاء الشبكة تلقائيًا، يجب أن تُضبط قيم تلك الإعدادات ضبطًا صحيحًا لكي تساعد في عمل الشبكة عملًا سليمًا في نظام أوبنتو عندك. عناصر الضبط الخاصة ببروتوكول TCP/IP ومعانيها هي: عنوان IP: هو سلسة نصية فريدة يُعبَّر عنها بأربع مجموعات من أرقام تتراوح بين الصفر (0)، ومئتان وخمسٌ وخمسون (255)، مفصولةٌ بنقط، وكل أربعة أرقام تمثل ثمانية (8) بتات من العنوان الذي يكون طوله الكامل اثنان وثلاثون (32) بتًا، تُسمى هذه الصيغة باسم «dotted quad notation». قناع الشبكة: قناع الشبكة الفرعية (أو باختصار: قناع الشبكة [netmask])، هو قناع ثنائي يفصل قسم عنوان IP المهم للشبكة، عن قسم العنوان المهم للشبكة الفرعية (Subnetwork)؛ على سبيل المثال، في شبكة ذات الفئة C‏ (Class C network)، قناع الشبكة الافتراضي هو 255.255.255.0، الذي يحجز أول ثلاثة بايتات من عنوان IP للشبكة، ويسمح لآخر بايت من عنوان IP أن يبقى متاحًا لتحديد المضيفين على الشبكة الفرعية. عنوان الشبكة: يمثل عنوان الشبكة (Network Address) البايتات اللازمة لتمثيل الجزء الخاص من الشبكة من عنوان IP، على سبيل المثال، المضيف صاحب العنوان 12.128.1.2 في شبكة ذات الفئة A يستطيع استخدام 12.0.0.0 كعنوان الشبكة، حيث يمثل الرقم 12 البايت الأول من عنوان IP (جزء الشبكة)، وبقية الأصفار في البايتات الثلاثة المتبقية تمثل قيم مضيفين محتملين في الشبكة؛ وفي مضيف شبكة يستخدم عنوان IP الخاص 192.168.1.100 الذي يستخدم بدوره عنوان الشبكة 192.168.1.0 الذي يحدد أول ثلاثة بايتات من شبكة ذات الفئة C والتي هي 192.168.1، وصفرًا الذي يُمثِّل جميع القيم المحتملة للمضيفين على الشبكة. عنوان البث: عنوان البث (Broadcast Address) هو عنوان IP يسمح لبيانات الشبكة بأن تُرسَل إلى كل المضيفين معًا في شبكة محلية بدلًا من إرسالها لمضيف محدد. العنوان القياسي العام للبث لشبكات IP هو 255.255.255.255، لكن لا يمكن استخدام هذا العنوان لبث الرسائل لكل مضيف على شبكة الإنترنت، لأن الموجهات (routers) تحجبها؛ ومن الملائم أن يُضبَط عنوان البث لمطابقة شبكة فرعية محددة، على سبيل المثال، في شبكة خاصة ذات الفئة C،‏ أي 192.168.1.0، يكون عنوان البث 192.168.1.255؛ تُولَّد رسائل البث عادةً من بروتوكولات شبكيّة مثل بروتوكول استبيان العناوين (Address Resolution Protocol‏ [ARP])، وبروتوكول معلومات التوجيه (Routing Information Protocol‏ [RIP]). عنوان البوابة: إن عنوان البوابة (Gateway Address) هو عنوان IP الذي يمكن الوصول عبره إلى شبكة معينة أو إلى مضيف معين على شبكة؛ فإذا أراد أحد مضيفي الشبكة التواصل مع مضيفٍ آخر، ولكن المضيف الآخر ليس على نفس الشبكة، فيجب عندئذٍ استخدام البوابة؛ في حالات عديدة، يكون عنوان البوابة في شبكةٍ ما هو الموجه (router) على تلك الشبكة، الذي بدوره يُمرِّر البيانات إلى بقية الشبكات أو المضيفين كمضيفي الإنترنت على سبيل المثال. يجب أن تكون قيمة عنوان البوابة صحيحةً، وإلا فلن يستطيع نظامك الوصول إلى أي مضيف خارج حدود شبكته نفسها. عنوان خادوم الأسماء: عناوين خادوم الأسماء (Nameserver Addresses) تمثل عناوين IP لخواديم خدمة أسماء المضيفين DNS، التي تستطيع استبيان (resolve) أسماء مضيفي الشبكة وتحويلها إلى عناوين IP؛ هنالك ثلاث طبقات من عناوين خادوم الأسماء، التي يمكن أن تُحدَّد بترتيب استخدامها: خادوم الأسماء الرئيسي (Primary)، وخادوم الأسماء الثانوي (Secondary)، وخادوم الأسماء الثلاثي (Tertiary)، ولكي يستطيع نظامك استبيان أسماء أسماء مضيفي الشبكة وتحويلها إلى عناوين IP الموافقة لهم، فيجب عليك تحديد عناوين خادوم الأسماء الذي تثق به لاستخدامه في ضبط TCP/IP لنظامك؛ في حالاتٍ عديدة، تُوفَّر هذه العناوين من موزع خدمة شبكتك، لكن هنالك خواديم أسماء عديدة متوفرة مجانًا للعموم، كخواديم Level3‏ (Verizon) بعناوين IP تتراوح بين 4.2.2.1 إلى 4.2.2.6. تنبيه: إن عنوان IP، وقناع الشبكة، وعنوان الشبكة، وعنوان البث، وعنوان البوابة تُحدَّد عادةً بالإمكان الملائمة لها في ملف ‎/etc/network/interfaces، عناوين خادوم الأسماء تُحدَّد عادة في قسم nameserver في ملف ‎/etc/resolve.conf، للمزيد من المعلومات، راجع صفحة الدليل لكلٍ من interfaces و resolv.conf على التوالي وبالترتيب، وذلك بكتابة الأوامر الآتية في محث الطرفية: للوصول إلى صفحة دليل interfaces، اكتب الأمر الآتي: man interfacesوللوصول إلى صفحة دليل resolv.conf: man resolv.confتوجيه IPيمثِّل توجيه IP‏ (IP Routing) الوسائل اللازمة لتحديد واكتشاف الطرق في شبكات TCP/IP بالإضافة إلى تحديد بيانات الشبكة التي ستُرسَل، يَستخدِم التوجيه ما يسمى «جداول التوجيه» (routing tables) لإدارة تمرير رزم بيانات الشبكة من مصدرها إلى وجهتها؛ وذلك عادة بواسطة عقد شبكيّة وسيطة تسمى «موجهات» (routers)؛ وهنالك نوعان رئيسيان من توجيه IP: التوجيه الثابت (static routing)، والتوجيه الديناميكي (dynamic routing). يشتمل التوجيه الثابت على إضافة توجيهات IP يدويًّا إلى جدول توجيهات النظام، ويتم ذلك عادةً بتعديل جدول التوجيهات باستخدام الأمر route؛ يتمتع التوجيه الثابت بعدِّة مزايا تميزه عن التوجيه الديناميكي، كسهولة استخدامه في الشبكات الصغيرة، وقابلية التوقع (يُحسَب جدول التوجيهات مسبقًا دائمًا، وهذا ما يؤدي إلى استخدام نفس المسار في كل مرة)، ويؤدي إلى حِملٍ قليل على الموجهات الأخرى ووصلات الشبكة نتيجةً لعدم استخدام بروتوكولات التوجيه الديناميكي؛ لكن يواجه التوجيه الثابت بعض الصعوبات أيضًا؛ فعلى سبيل المثال، التوجيهُ الثابتُ محدودٌ للشبكات الصغيرة، ولا يمكن أن يتوسَّع توسعًا سهلًا، ويصعب عليه التأقلم مع نقصان أو فشل معدات الشبكة في الطريق المسلوك نتيجةً للطبيعة الثابتة لذاك الطريق. يُعتَمَد على التوجيه الديناميكي في الشبكات الكبيرة ذات احتمالات عديدة للطرق الشبكية المسلوكة من المصدر إلى الوجهة، وتُستخدَم بروتوكولات توجيه خاصة، كبروتوكول معلومات الموجه (Router Information Protocol [RIP])، الذي يتولَّى أمر التعديلات التلقائية في جداول التوجيه، مما يجعل من التوجيه الديناميكي أمرًا ممكنًا؛ وللتوجيه الديناميكي مزايا عدّة عن التوجيه الثابت، كإمكانية التوسع بسهولة، والتأقلم مع نقصان أو فشل معدات الشبكة خلال الطريق المسلوك في الشبكة، بالإضافة إلى الحاجة لإعداداتٍ قليلةٍ نسبيًا لجداول التوجيه، ﻷن الموجهات تعلم عن وجود وتوفر بعضها بعضًا؛ وهذه الطريقة تمنع حدوث مشاكل في التوجيه نتيجةً لخطأ بشري في جداول التوجيه. لكن التوجيه الديناميكي ليس كاملًا، ويأتي مع عيوب، كالتعقيد، والحِمل الزائد على الشبكة بسبب التواصل بين الموجهات، التي لا تفيد المستخدمين المباشرين فوريًا، وتستهلك التراسل الشبكي. بروتوكولَي TCP و UDPإن بروتوكول TCP هو بروتوكول مبني على الاتصال (connection-based)، ويوفر آليةً لتصحيح الأخطاء، وضمانةً لتسليم البيانات عبر ما يُعرَف بالمصطلح «التحكم في الجريان» (flow control)، يُحدِّد التحكم في الجريان متى يجب إيقاف نقل البيانات، وإعادة إرسال الرزم التي أُرسِلَت سابقًا والتي واجهة مشاكل كالتصادمات (collisions)؛ إذ أنَّ التأكيد على الوصول الدقيق والكامل للبيانات عبر بروتوكول TCP هو أمر جوهري في عملية تبادل البيانات المهمة كالتحويلات في قواعد البيانات. أما بروتوكول UDP‏ (User Datagram Protocol) على الجهة الأخرى، هو بروتوكول عديم الاتصال (connectionless)، الذي نادرًا ما يتعامل مع عمليات نقل البيانات المهمة لأنه يفتقر إلى التحكم في جريان البيانات أو أيّة طريقة أخرى للتأكد من توصيل البيانات عمليًا؛ لكن بروتوكول UDP يُستخدَم استخدامًا شائعًا في التطبيقات كتدفق (streaming) الصوت والصورة، حيث أنه أسرع بكثير من TCP ﻷنه لا يحتوي على آليةٍ لتصحيح الأخطاء والتحكم في الجريان، وفي الأماكن التي لا يهم فيها فقدان بعض الرزم الشبكية كثيرًا. بروتوكول ICMPإن بروتوكول ICMP‏ (Internet Control Messaging Protocol) هو إضافة إلى بروتوكول الإنترنت (IP) الذي يُعرَّف في RFC‏‏ (Request For Comments) ذي الرقم ‎#792 ويدعم التحكم في احتواء الرزم الشبكية والأخطاء ورسائل المعلومات، يُستخدَم بروتوكول ICMP بتطبيقات شبكيّة كأداة ping، التي تستطيع تحديد إذا ما كان جهازٌ ما متاحًا على الشبكة، أمثلة عن رسالة الخطأ المُعادَة من ICMP -التي تكون مفيدةً لمضيفي الشبكة وللأجهزة كالموجهات- تتضمن رسالتَي «Destination Unreachable» و «Time Exceeded». العفاريتالعفاريت (Daemons) هي تطبيقات نظام خاصة التي تعمل عادةً عملًا دائمًا في الخلفية، وتنتظر طلبياتٍ للوظائف التي توفرها من التطبيقات الأخرى، يتمحور عمل العديد من العفاريت حول الشبكة، وبالتالي فإن عددًا كبيرًا من العفاريت التي تعمل في الخلفية في نظام أوبنتو تُوفِّر وظائف تتعلق بالشبكة؛ بعض الأمثلة عن عفاريت الشبكة تتضمن «عفريت بروتوكول نقل النص الفائق» (HyperText Transport Protocol Daemon‏ [httpd])، الذي يوفر وظيفة خادوم الويب؛ و «عفريت الصدفة الآمنة» (Secure SHell Daemon‏ [sshd])، الذي يوفر طريقةً للدخول الآمن عن بُعد وإمكانيات نقل الملفات؛ و «عفريت بروتوكول الوصول إلى رسائل الإنترنت» (Internet Message Access Protocol Daemon‏ [imapd]) الذي يوفر خدمات البريد الإلكتروني... مصادرتتوفر صفحات دليلٍ لبروتوكولي TCP و IP التي تحتوي على معلومات قيمّة.راجع أيضًا المصدر الآتي من IBM‏: «TCP/IP Tutorial and Technical Overview».مصدرٌ أخرى هو كتاب «TCP/IP Network Administration» من O'Reilly.ترجمة -وبتصرف- للمقال Ubuntu Server Guide: Networking TCP/IP.
  6. icnd1/ccent 100-101

    الوظيفة الرئيسية لطبقة النقل هي إخفاء تعقيدات الشبكة عن الطبقات العليا (التطبيق والعرض والجلسة)، مُتيحةً لمُطورِيّ التطبيقات تطويرَ البرمجيات دون التفكير في طريقة التعامل مع الشبكة. مما يوفِّر استقلاليّةً في نشر (deployment) وتطوير المكونات (components) في تجميعة بروتوكول IP. يتوفَّر بروتوكولان في طبقة النقل هما: UDP ‏(User Datagram Protocol)، و TCP ‏(Transmission Control Protocol). يقوم كلاهما بالإرسال المتعدد للجلسة (session multiplexing)، الذي هو أحد الوظائف الرئيسية لطبقة النقل، الذي يعني أنه يتمّكن جهازٌ ما يستعمل عدِّة جلسات أو عدِّة اتصالات من استخدام عنوان IP ذاته للتواصل مع الشبكة. مثال: تتمكن الخواديم التي توفِّر خدمات الويب وFTP من استخدام نفس عنوان IP. ميزةٌ أخرى هي«التقطيع» (segmentation) التي تُحضِّر وحدات المعلومات (units of information) من طبقة التطبيقات وتُقسِّمها إلى قطع لتغليفها في رزم لإرسالها عبر الشبكة. وقد تتأكد طبقة النقل -اختياريًّا- أن تلك الرزم قد وصلت إلى الوجهة عبر آليات التحكم في الجريان (flow control). ما سبق اختيارٌ لأنَّ بروتوكول TCP هو من يوفِّر تلك الخدمة فقط، لأنه بروتوكولٌ يعتمد على الاتصالات (connection-oriented)؛ على عكس UDP الذي هو بروتوكول عديم الاتصال (connectionless)، ويُستخدَم عندما تكون السرعةُ عاملًا مهمًّا، حيث يؤدي التحكم في الجريان والوثوقية (reliability) إلى إبطاء سرعة الاتصال. فإذا أردنا أن نقارن بروتوكولَي طبقة النقل، فسيكون بروتوكول TCP معتمدًا على الاتصالات، وهو بروتوكولٌ ذو وثوقيةٍ عالية، ويوفِّر آلياتٍ مثل ترقيم الرزم وإعادة تجميعها في الوجهة بنفس الترتيب، وآليةٌ كاملةٌ لتحديد التوقيت لضمان تسليم الرزم... أما UDP فهو بروتوكولٌ عديم الاتصال، ولا يوفِّر أي ترتيبٍ للرزم ولا أي نوعٍ من ضمانة توصيلها. هذا يشبه إلى حدٍ كبير المكالمات الهاتفيّة، حيث عليك أن تطلب الرقم وتُنشِئ اتصالًا قبل أن تبدأ بالتكلّم، وهذا مثل TCP؛ أو توصيل البريد العادي، حيث لا تضمن أن رسائلك ستصل إلى وجهتها، فإنِّك تُرسِل الرزم الشبكيّة آملًا أن تصل إلى هناك، وهذا مثل UDP. لكن قد تتعامل الطبقات العليا مع بروتوكول UDP بطريقةٍ مختلفة، وتزيد من وثوقية توصيله للرزم. أمثلة على استخدام كلي البروتوكولَين: تَستخدم خدمات البريد الإلكتروني ونقل الملفات والتنزيل بروتوكول TCP ذا الوثوقيّة العالية؛ أما اتصالات الصوت والفيديو فستستفيد من التخلص من عبء التحقق من الوصول والوثوقية مما يؤدي إلى تسريع تسليم الرزم، حيث تستطيع تلك التطبيقات التعامل مع فقدان بعض الرزم الشبكيّة. الوثوقية أفضل جهد (Best-Effort) البروتوكول TCP UDP نوع الاتصال ذو اتصال عديم الاتصال ترتيب الرزم نعم لا الاستخدامات البريد الإلكتروني مشاركة الملفات تنزيل الملفات تدفق الصوت تدفق الفيديو الخدمات التي تعمل بالوقت الحقيقي خصائص بروتوكول UDPهو بروتوكولٌ عديم الاتصال، حيث يوفِّر تحققًا محدودًا من الأخطاء، فلا توجد ميزات لاستعادة البيانات عند فقدان بعض الرزم، ولهذا لا يوفِّر ميزة إعادة إرسال الرزم، إذ تستفيد التطبيقات التي تستخدم UDP من قلة الإجراءات المُتّبَعة عند استخدام هذا البروتوكول، لأنه لا توجد آليات للتحقق من وثوقية وصول البيانات؛ نقصد بالتحقق المحدود من الأخطاء أنَّ هنالك بعض التحقق من الأخطاء على شكل مجموعات اختبارية (checksums) للتحقق من سلامة البيانات الموجودة في هذه الرزم؛ وهنالك أيضًا ترويسة صغيرة تتضمن المنافذ في المصدر والوجهة، فلو لم تكن هنالك خدمةٌ تعمل على جهاز الوجهة، فسيُعيد بروتوكول UDP رسالة خطأ تقول أنَّ الخدمة غير متوفرة. تحتوي ترويسة UDP على المنافذ في المصدر والوجهة، التي تُحدِّد التطبيقات التي تتصل عبر UDP، ويوجد أيضًا طول الحمولة (payload) وطول الترويسة والمجموع الاختباري للتحقق من سلامة البيانات. خصائص بروتوكول TCPيُوفِّرُ بروتوكولٌ يعتمد على الاتصالات، مثل TCP، وثوقيةً واكتشافًا للأخطاء وتصحيحًا لها، ويَضمن أيضًا توصيل الرزم؛ ولهذه الأسباب، سيكون أكثر تعقيدًا من UDP؛ إذ يُوفِّر تحققًا من الأخطاء على شكل مجموعات اختباريّة (checksums) بالإضافة إلى ترقيم كل رزمة لكي تتأكد الوجهة من الترتيب وتبحث عن الأجزاء أو الرزم الناقصة؛ يشبه اتصال TCP محادثةً تتم عبر الجهاز اللاسلكي (walkie-talkie)؛ حيث تتضمن إشعاراتٍ (acknowledgments) من كل طرف أنَّ الطرفَ الآخر قد استلم البيانات، وسيتم إكمال إرسال البيانات بعد استلام تأكيد بأنَّ الرزم السابقة قد وصلت. ولدى هذا البروتوكول آليةٌ لكي يعيد إرسال البيانات؛ فإن فُقِدَت رزمةٌ ما أثناء النقل، فيمكن إعادة إرسالها بمعرفة رقمها التسلسلي. لن تؤدي العملية السابقة إلى المزيد من الإجراءات والبروتوكولات -مثل حساب الأرقام التسلسلية وآلية «sliding windows»- فحسب، بل وستؤدي أيضًا إلى وجود المزيد من المعلومات التي يجب تضمينها في الترويسة؛ ففي بروتوكول TCP، لن نشاهد منافذ المصدر والوجهة في الترويسة فقط، وإنما سنشاهد أيضًا الأرقام التسلسلية، وأرقام إشعارات الاستلام. يُحدَّد حجم النافذة (window size) لتسهيل عملية تأكيد وصول عدِّة رزم في مرة واحدة؛ وسيضمن المجموع الاختباري سلامة البيانات المنقولة. وهنالك أنماطٌ مختلفةٌ من التوصيل عبر استعمال «مؤشِّر الرزم المُستعجَلة» (urgent pointer)، والخيارات، والرايات (flags). لمحة عن طبقة التطبيقات في TCP/IPمهمة طبقة النقل هي إخفاء تعقيد الشبكة عن التطبيقات في الطبقة العليا؛ يمكن بناء تلك التطبيقات باستخدام TCP أو UDP اعتمادًا على حاجاتها، فيما إذا كانت تريد اتصالًا ذو وثوقيةٍ عالية، أو كانت تفضِّل سرعة النقل؛ مثالٌ عن التطبيقات هو تطبيقات FTP، و TFTP، وNFS لنقل الملفات؛ وSTMP، و POS3 للبريد الإلكتروني؛ ومختلف تطبيقات الوصول عن بُعد؛ و SNMP لإدارة الشبكة؛ وخدمة DNS لتحويل أسماء المضيفين إلى عناوين IP. أحد أهم المفاهيم الأساسية لأي نموذج متعدد الطبقات هو التفاعل بين الطبقات؛ والطبقتان 3 و 4 من نموذج OSI ليستا استثناءً؛ فمثلًا، لو استقبل جهازٌ معيّن رزمًا من الشبكة وعالجها عبر بروتوكول IP في الطبقة الثالثة، فسيحتاج إلى مزيدٍ من المعلومات لتحديد البروتوكول الملائم لمعالجة تلك الرزمة، هل هو TCP أم UDP؛ بكلامٍ آخر، ما هو بروتوكول طبقة النقل الذي يجب أن يتوَّلى أمر الرزمة من هنا؟ يَستخدم IP حقل «البروتوكول» لتحديد بروتوكول طبقة النقل المُستخدَم؛ فمثلًا، الرقم «6» في حقل البروتوكول يعني أن TCP هو بروتوكول طبقة النقل الذي يجب أن يُعالِج تلك الرزمة، بينما «17» يعني أنَّ UDP هو البروتوكول الذي عليه معالجة الرزمة. وبشكلٍ مشابه، سيحتاج بروتوكولَيّ TCP و UDP إلى المزيد من المعلومات ليعلما أيُّ تطبيقٍ في الطبقات العليا سيستلم الرزم الموجَّهة إليه؛ وذلك عبر أرقام المنافذ التي ستُذكَر في ترويسة طبقة النقل؛ على سبيل المثال، يُمثِّل المنفذ 21 خدمة FTP، و23 خدمة Telnet، بينما 80 يُمثِّل خدمة الويب على شكل بروتوكول HTTP؛ أما 53 فلخدمة DNS، و69 لخدمة TFTP، و 161 لخدمة SNMP؛ يجب أن تكون تلك الأرقام فريدةً، وهي مُسندةٌ من هيئة IANA؛ تكون أرقام المنافذ الشهيرة تحت 1023، لكن هنالك مجالاتٌ أخرى للمنافذ المُسجَّلة لكنّها تتبع للتطبيقات الاحتكاريّة؛ وحتى هنالك مجالاتٌ متوفرة للمنافذ التي تُحدَّد ديناميكيًا. إنشاء اتصالبروتوكول TCP مسؤولٌ عن إنشاء الاتصالات قبل إرسال الرزم؛ سيُستعمَل هذا الاتصال من كلي الطرفين لإنشاء جلسة معيّنة وإخفاء تعقيد الشبكة عنهما؛ بكلامٍ آخر، سيرى المُضيفان مُعرِّف الاتصال (connection identifier) وليس الشبكة المعقدة التي تقع «تحت» ذاك الاتصال؛ ومن واجبات بروتوكول TCP أيضًا إنشاء، وإدارة، وإنهاء الاتصالات بعد الانتهاء منها. عملية «إنشاء الاتصال ثلاثية الاتجاه» (three-way handshake) هي عملية لمزامنة (synchronizing) جهازَين ليعلما أنهما متصلان عبر TCP؛ تَستخدِم هذه العملية رزمًا خاصةً التي تستعمل حقول التحكم (control fields) وترويسة TCP؛ حقول التحكم تلك مُعرَّفةٌ بالكلمة المفتاحية CTL في المخطط البياني التالي. ويبدأ الأمر بأكمله بإرسال رزمةٍ لها رقمٌ تسلسليٌ معيّن؛ وبكل تأكيد، سيكون «بت» التحكم هو SYN؛ ستُرسَل الرزمة وتعالجها النهاية المُستقبِلة وتُرسِل ما يُعرَف بإشعار SYN، التي (أي رزمة ذاك الإشعار) تكون فيها راية SYN ‏(SYN flag) وراية الإشعار. وتُستخدَم أيضًا الأرقام التسلسلية لإشعار استلام السلسلة التالية من البتات؛ يُنشَأ الاتصال بشكل كامل عندما يُرسَل الإشعار النهائي من المستلم؛ بت التحكم المُستخدم في الإشعار النهائي هو راية الإشعار فقط. وهذا يُشبِه محادثة الهاتف حيث نبدأ المحادثة بقول «مرحبًا» ويُرَدُّ علينا بالجملة «أهلًا، أنا هنا» ثم سيقول المُرسِل «حسنًا، لقد أنشَأنا الاتصال، لنبدأ التحدث». التحكم في الجريان (Flow Control)تؤدي آلية التحكم في الجريان في طبقة النقل والبروتوكولات مثل TCP إلى وظيفتين مستقلتين لكن توجد علاقةٌ تربط بينهما؛ أولاهما هي إشعارات استلام الرزم؛ والإشعارات ما هي إلا رزمٌ خاصةٌ تمثِّل تأكيدًا أن البيانات قد وصلت إلى وجهتها؛ ولن يُكمِل المُرسِل إرسال بياناتٍ إضافيةٍ ما لم يحصل على إشعارٍ باستلام البيانات المُرسَلة سابقًا. الآلية الثانية هي «النوافذ» (windows)، التي تخدم هدف إرسال إشعار باستلام قطع من البيانات؛ بكلامٍ آخر، بدلًا من إرسال إشعار باستلام كل رزمة؛ فسنطلب من المُرسِل أن يُرسِل سلسلةً من الرزم دفعةً واحدة، بدلًا من إرسالها مُتفرِّقةً. وتُساهِم هذه الآلية بزيادة التحكم بكمية البيانات المُرسَلة، فعندما يُرسِل المُستقبِل حجم نافذة مساوٍ للقيمة 0، فإنه يقول للمُرسِل: «حافظتي ممتلئة، لا أستطيع معالجة أيّة بياناتٍ إضافيةً، أتمنى أن تنتظر حتى إشعارٍ آخر»، وعندما تصبح حافظة المستقبِل فارغةً ويصبح بمقدوره استلام المزيد من الرزم، فسيُستأنَف نقل البيانات عبر إرسال حجم نافذة مختلف؛ وفي هذه النقطة، سيُعيد المُرسِل تهيئة عملية النقل مجددًا. حجم النافذة ما هو إلا مقدار المعلومات التي لم يُرسَل إشعارٌ باستلامها التي يمكن أن تكون قيد الإرسال؛ فعندما يُرسِل المُرسِل قطعة (chunk) البيانات رقم 1 (وتُعرَّف تلك القطعة بعدد البايتات أو الكيلوبايتات التي ستُرسَل)، فسيعمله المُستقبِل بذلك عبر تحديد القطعة التالية التي يتوقع وصولها؛ بكلامٍ آخر، لن يقول المُستقبِل: «أنا أعلمك أنني استلمت القطعة رقم 1 من البيانات»، بل سيقول: «أرسِل لي قطعة البيانات رقم 2 الآن»؛ يكون حجم النافذة في المثال السابق هو «1»، أي أننا نُرسِل إشعارًا باستلام كل قطعة، وهذا سيصبح أمرًا معقّدًا ويسبب بطئًا في الشبكة؛ حيث يلزم المزيد من الإشعارات للتحكم في التدفق ولإكمال الإرسال. فمن المهم أن نفهم أنَّ ما نسميّه «قطعًا» (chunks) يكون على شكل «segments» في طبقة النقل، وتكون تلك القطعة بوحدة بايت أو كيلوبايت. لا يُسبِّب إشعارٌ واحدٌ لكل وحدة بيانات حِملًا ثقيلًا على الشبكة فحسب، بل يُبطِئ أيضًا من سرعة الاتصال؛ وهذا يشبه كثيرًا قول كلمة «حوِّل» (في مثالنا عن «اتصال الراديو» السابق) بعد كل كلمة يقولها المُرسِل: «أهلًا حوِّل»، «بِك حوِّل» ...إلخ. يتضمّن بروتوكول TCP آليةً للنوافذ، التي تسمح بزيادة عدد القطع المُرسَلة قبل إشعار استلامها؛ وبهذا، تستطيع أن تقول «أهلًا بِك» ثم تقول كلمة «حوِّل» في نهاية الجملة. يُمثِّل حجم النافذة عدد البايتات أو الكيلوبايتات التي يمكن أن تُرسَل دفعةً واحدة؛ ففي المخطط الآتي، ستُرسَل ثلاث قطع، ثم سيُرسِل المُستقبِل إشعارًا بالاستلام بقوله: «أرسل لي الرقم 4». وبهذا نكون قد أرسلنا إشعارًا باستلام أول ثلاث قطع دفعةً واحدة. يكون حجم النافذة في الحياة العملية بوحدة الكيلوبايت، أي ستكون طريقة زيادة حجم النافذة كالآتي: «كنت أُرسِل 64 كليوبايت، وأنا الآن أُرسِل 128 كيلوبايت، ويمكنك إرسال إشعار باستلام 128 كيلوبايت بدلًا من 64». لا يُفضَّل استخدام نافذةٌ ذات حجمٍ ثابت للمُستقبِل والمُرسِل لملائمة ازدحام الشبكة (network congestion) والتأقلم تبعًا له؛ يسمح لك حجم نافذة محجوزٌ ديناميكيًا (ويُعرَف أيضًا بالمصطلح «sliding window») بالتأقلم دون التسبب بازدحامٍ في الشبكة ويعمل أيضًا كآلية للتحكم بالجريان (flow control mechanism). تكتمل آلية التحكم عبر استخدام أرقام تسلسلية وأرقام إشعارات الاستلام؛ لاحظ أنه في هذا الرسم التوضيحي تكون الأرقام التسلسلية أكثر واقعيةً حيث تَظهِر كميّة البيانات بوحدة البايت التي ستُرسَل في كل قطعة؛ أي أنَّ الرقم التسلسلي «10» يعني أنَّه قد أُرسِل 10 بايتات من البيانات؛ ورقم إشعار الاستلام 11 يعني أن أول 10 بايتات قد اُستُلِمَت ويتوقع المُستقبِل إرسال القطعة التي تلي تلك البايتات؛ التبادل التالي ذو الرقم 260 يعني أن 250 بايتًا من البيانات قد أُرسِل، أي أن الرقم التسلسلي يمثِّل إزاحةً لها علاقة بالقطعة التي أُرسِلت في البداية. لاحظ أن المُرسِل والمُستقبِل يعلمان عن هذه المحادثة ويمكن أن يعتبرانها اتصالًا واحدًا بناءً على المنافذ المُستخدَمة في المصدر والوجهة. يُولَّد منفذ المصدر عشوائيًا وقت الاتصال، لكن يجب معرفة منفذ الوجهة مسبقًا، الذي يُعرِّف تطبيقًا معيّنًا، وهو Telnet في هذا الرسم التوضيحي: ترجمة -وبتصرّف- للمقال Understanding The TCP/IP Transport Layer.